Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Appl Mater Interfaces ; 16(7): 8627-8638, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345507

ABSTRACT

Chemical stability of hexagonal boron nitride (hBN) ultrathin layers in harsh electrolytes and the availability of nitrogen site in hBN to stabilize metals like Pt are used here to develop a high intrinsic activity hydrogen evolution reaction (HER) catalyst having low loaded Pt (5 weight% or <1 atomic%). A catalyst having a nonzero oxidation state for Pt (with a Pt-N bonding) is shown to be HER active even with low catalyst loadings (0.114 mgcm-2). Electronic modification of the shear exfoliated hBN sheets is achieved by Au nanoparticle-based surface decoration (hBN_Au), and further anchoring with Pt develops a catalyst (hBN_Au_Pt) with high turnover frequency for HER (∼15). The hBN_Au_Pt is shown to be a highly durable catalyst even after the accelerated durability test for 10000 cycles and temperature annealing at 100 °C. Density functional theory based calculations gave insights in to the electronic modifications of hBN with Au and the catalytic activity of the hBN_Au_Pt system, in line with the experimental studies, indicating the demonstration of a new class of catalyst system devoid of issues such as carbon corrosion and Pt leaching.

SELECTION OF CITATIONS
SEARCH DETAIL