Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Mult Scler ; : 13524585241267211, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087208

ABSTRACT

BACKGROUND: Comparisons between cladribine and other potent immunotherapies for multiple sclerosis (MS) are lacking. OBJECTIVES: To compare the effectiveness of cladribine against fingolimod, natalizumab, ocrelizumab and alemtuzumab in relapsing-remitting MS. METHODS: Patients with relapsing-remitting MS treated with cladribine, fingolimod, natalizumab, ocrelizumab or alemtuzumab were identified in the global MSBase cohort and two additional UK centres. Patients were followed for ⩾6/12 and had ⩾3 in-person disability assessments. Patients were matched using propensity score. Four pairwise analyses compared annualised relapse rates (ARRs) and disability outcomes. RESULTS: The eligible cohorts consisted of 853 (fingolimod), 464 (natalizumab), 1131 (ocrelizumab), 123 (alemtuzumab) or 493 (cladribine) patients. Cladribine was associated with a lower ARR than fingolimod (0.07 vs. 0.12, p = 0.006) and a higher ARR than natalizumab (0.10 vs. 0.06, p = 0.03), ocrelizumab (0.09 vs. 0.05, p = 0.008) and alemtuzumab (0.17 vs. 0.04, p < 0.001). Compared to cladribine, the risk of disability worsening did not differ in patients treated with fingolimod (hazard ratio (HR) 1.08, 95% confidence interval (CI) 0.47-2.47) or alemtuzumab (HR 0.73, 95% CI 0.26-2.07), but was lower for patients treated with natalizumab (HR 0.35, 95% CI 0.13-0.94) and ocrelizumab (HR 0.45, 95% CI 0.26-0.78). There was no evidence for a difference in disability improvement. CONCLUSION: Cladribine is an effective therapy that can be viewed as a step up in effectiveness from fingolimod, but is less effective than the most potent intravenous MS therapies.

2.
Commun Biol ; 7(1): 813, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965401

ABSTRACT

Strategies for treating progressive multiple sclerosis (MS) remain limited. Here, we found that miR-145-5p is overabundant uniquely in chronic lesion tissues from secondary progressive MS patients. We induced both acute and chronic demyelination in miR-145 knockout mice to determine its contributions to remyelination failure. Following acute demyelination, no advantage to miR-145 loss could be detected. However, after chronic demyelination, animals with miR-145 loss demonstrated increased remyelination and functional recovery, coincident with altered presence of astrocytes and microglia within the corpus callosum relative to wild-type animals. This improved response in miR-145 knockout animals coincided with a pathological upregulation of miR-145-5p in wild-type animals with chronic cuprizone exposure, paralleling human chronic lesions. Furthermore, miR-145 overexpression specifically in oligodendrocytes (OLs) severely stunted differentiation and negatively impacted survival. RNAseq analysis showed altered transcriptome in these cells with downregulated major pathways involved in myelination. Our data suggest that pathological accumulation of miR-145-5p is a distinctive feature of chronic demyelination and is strongly implicated in the failure of remyelination, possibly due to the inhibition of OL differentiation together with alterations in other glial cells. This is mirrored in chronic MS lesions, and thus miR-145-5p serves as a potential relevant therapeutic target in progressive forms of MS.


Subject(s)
Demyelinating Diseases , Disease Models, Animal , Mice, Knockout , MicroRNAs , Remyelination , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Remyelination/genetics , Mice , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Recovery of Function , Male , Mice, Inbred C57BL , Cuprizone/toxicity , Female , Chronic Disease , Myelin Sheath/metabolism
3.
PLOS Digit Health ; 3(7): e0000533, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39052668

ABSTRACT

BACKGROUND: Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. METHODS: Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. FINDINGS: Machine learning models achieved a ROC-AUC of 0⋅71 ± 0⋅01, an AUC-PR of 0⋅26 ± 0⋅02, a Brier score of 0⋅1 ± 0⋅01 and an expected calibration error of 0⋅07 ± 0⋅04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. CONCLUSIONS: Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.

4.
Article in English | MEDLINE | ID: mdl-38951020

ABSTRACT

Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.

5.
J Neurol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935148

ABSTRACT

BACKGROUND: The COVID-19 pandemic raised concern amongst clinicians that disease-modifying therapies (DMT), particularly anti-CD20 monoclonal antibodies (mAb) and fingolimod, could worsen COVID-19 in people with multiple sclerosis (pwMS). This study aimed to examine DMT prescribing trends pre- and post-pandemic onset. METHODS: A multi-centre longitudinal study with 8,771 participants from MSBase was conducted. Two time periods were defined: pre-pandemic (March 11 2018-March 10 2020) and post-pandemic onset (March 11 2020-11 March 2022). The association between time and prescribing trends was analysed using multivariable mixed-effects logistic regression. DMT initiation refers to first initiation of any DMT, whilst DMT switches indicate changing regimen within 6 months of last use. RESULTS: Post-pandemic onset, there was a significant increase in DMT initiation/switching to natalizumab and cladribine [(Natalizumab-initiation: OR 1.72, 95% CI 1.39-2.13; switching: OR 1.66, 95% CI 1.40-1.98), (Cladribine-initiation: OR 1.43, 95% CI 1.09-1.87; switching: OR 1.67, 95% CI 1.41-1.98)]. Anti-CD20mAb initiation/switching decreased in the year of the pandemic, but recovered in the second year, such that overall odds increased slightly post-pandemic (initiation: OR 1.26, 95% CI 1.06-1.49; Switching: OR 1.15, 95% CI 1.02-1.29. Initiation/switching of fingolimod, interferon-beta, and alemtuzumab significantly decreased [(Fingolimod-initiation: OR 0.55, 95% CI 0.41-0.73; switching: OR 0.49, 95% CI 0.41-0.58), (Interferon-gamma-initiation: OR 0.48, 95% CI 0.41-0.57; switching: OR 0.78, 95% CI 0.62-0.99), (Alemtuzumab-initiation: OR 0.27, 95% CI 0.15-0.48; switching: OR 0.27, 95% CI 0.17-0.44)]. CONCLUSIONS: Post-pandemic onset, clinicians preferentially prescribed natalizumab and cladribine over anti-CD20 mAbs and fingolimod, likely to preserve efficacy but reduce perceived immunosuppressive risks. This could have implications for disease progression in pwMS. Our findings highlight the significance of equitable DMT access globally, and the importance of evidence-based decision-making in global health challenges.

7.
Nat Commun ; 15(1): 4177, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755196

ABSTRACT

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Subject(s)
Antibodies, Viral , COVID-19 , Interferons , SARS-CoV-2 , Signal Transduction , Humans , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Signal Transduction/immunology , Interferons/metabolism , Interferons/immunology , Female , Male , Middle Aged , Immunoglobulin G/blood , Immunoglobulin G/immunology , CD4-Positive T-Lymphocytes/immunology , Aged , Adult , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics
8.
Nature ; 627(8005): 865-872, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509377

ABSTRACT

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Epigenetic Memory , Multiple Sclerosis , Animals , Female , Humans , Male , Mice , Acetyl Coenzyme A/metabolism , Astrocytes/enzymology , Astrocytes/metabolism , Astrocytes/pathology , ATP Citrate (pro-S)-Lyase/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , CRISPR-Cas Systems , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/enzymology , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Single-Cell Gene Expression Analysis , Transposases/metabolism
9.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374028

ABSTRACT

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Subject(s)
Cytoplasmic Granules , Multiple Sclerosis , Humans , Cytoplasmic Granules/metabolism , Stress Granules , Oligodendroglia , Cytokines/metabolism , Stress, Physiological , Multiple Sclerosis/metabolism
10.
Ther Adv Neurol Disord ; 17: 17562864231221331, 2024.
Article in English | MEDLINE | ID: mdl-38414723

ABSTRACT

Background: Aggressive disease control soon after multiple sclerosis (MS) diagnosis may prevent irreversible neurological damage, and therefore early initiation of a high-efficacy disease-modifying therapy (DMT) is of clinical relevance. Objectives: Evaluate long-term clinical outcomes in patients with MS who initiated treatment with either natalizumab or a BRACETD therapy (interferon beta, glatiramer acetate, teriflunomide, or dimethyl fumarate). Design: This retrospective analysis utilized data from MSBase to create a matched population allowing comparison of first-line natalizumab to first-line BRACETD. Methods: This study included patients who initiated treatment either with natalizumab or a BRACETD DMT within 1 year of MS diagnosis and continued treatment for ⩾6 months, after which patients could switch DMTs or discontinue treatment. Patients had a minimum follow-up time of ⩾60 months from initiation. A subgroup analysis compared the natalizumab group to patients in the BRACETD group who escalated therapy after 6 months. Outcomes included unadjusted annualized relapse rates (ARRs), time-to-first relapse, time-to-first confirmed disability improvement (CDI), and time-to-first confirmed disability worsening (CDW). Results: After 1:1 propensity score matching, 355 BRACETD patients were matched to 355 natalizumab patients. Patients initiating natalizumab were less likely to experience a relapse over the duration of follow-up, with ARRs [95% confidence interval (CI)] of 0.080 (0.070-0.092) for natalizumab patients and 0.191 (0.178-0.205) for BRACETD patients (p < 0.0001). A Cox regression model of time-to-first relapse showed a reduced risk of relapse for natalizumab patients [hazard ratio (95% CI) of 0.52 (0.42-0.65); p < 0.001] and a more favorable time-to-first CDI. The risk of CDW was similar between groups. The subgroup analysis showed an increased relapse risk as well as a significantly higher risk of CDW for BRACETD patients. Conclusion: Early initiation of natalizumab produced long-term benefits in relapse outcomes in comparison with BRACETD, regardless of a subsequent escalation in therapy.

11.
bioRxiv ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38260616

ABSTRACT

Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.

12.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293135

ABSTRACT

Dimensionality reduction-based data visualization is pivotal in comprehending complex biological data. The most common methods, such as PHATE, t-SNE, and UMAP, are unsupervised and therefore reflect the dominant structure in the data, which may be independent of expert-provided labels. Here we introduce a supervised data visualization method called RF-PHATE, which integrates expert knowledge for further exploration of the data. RF-PHATE leverages random forests to capture intricate featurelabel relationships. Extracting information from the forest, RF-PHATE generates low-dimensional visualizations that highlight relevant data relationships while disregarding extraneous features. This approach scales to large datasets and applies to classification and regression. We illustrate RF-PHATE's prowess through three case studies. In a multiple sclerosis study using longitudinal clinical and imaging data, RF-PHATE unveils a sub-group of patients with non-benign relapsingremitting Multiple Sclerosis, demonstrating its aptitude for time-series data. In the context of Raman spectral data, RF-PHATE effectively showcases the impact of antioxidants on diesel exhaust-exposed lung cells, highlighting its proficiency in noisy environments. Furthermore, RF-PHATE aligns established geometric structures with COVID-19 patient outcomes, enriching interpretability in a hierarchical manner. RF-PHATE bridges expert insights and visualizations, promising knowledge generation. Its adaptability, scalability, and noise tolerance underscore its potential for widespread adoption.

13.
Brain ; 147(1): 147-162, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37640028

ABSTRACT

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Mice , Animals , CD4-Positive T-Lymphocytes/metabolism , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Cell Adhesion , Oligodendroglia/metabolism
14.
Lancet Neurol ; 23(1): 95-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101906

ABSTRACT

Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.


Subject(s)
Blood-Brain Barrier , Multiple Sclerosis , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Brain/pathology , Gray Matter/pathology
15.
Sci Transl Med ; 15(721): eadh1150, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37939159

ABSTRACT

Peripheral immune cells can be seen as attractive vectors and drug carriers for central nervous system therapeutics because these cells have unique properties that allow them to migrate across the blood-brain barrier, enabling drug delivery to brain regions that are inaccessible to free drugs.


Subject(s)
Central Nervous System Diseases , Central Nervous System , Humans , Blood-Brain Barrier , Brain , Drug Delivery Systems , Drug Carriers , Central Nervous System Diseases/drug therapy
16.
EBioMedicine ; 96: 104789, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703640

ABSTRACT

BACKGROUND: B cells can be enriched within meningeal immune-cell aggregates of multiple sclerosis (MS) patients, adjacent to subpial cortical demyelinating lesions now recognized as important contributors to progressive disease. This subpial demyelination is notable for a 'surface-in' gradient of neuronal loss and microglial activation, potentially reflecting the effects of soluble factors secreted into the CSF. We previously demonstrated that MS B-cell secreted products are toxic to oligodendrocytes and neurons. The potential for B-cell-myeloid cell interactions to propagate progressive MS is of considerable interest. METHODS: Secreted products of MS-implicated pro-inflammatory effector B cells or IL-10-expressing B cells with regulatory potential were applied to human brain-derived microglia or monocyte-derived macrophages, with subsequent assessment of myeloid phenotype and function through measurement of their expression of pro-inflammatory, anti-inflammatory and homeostatic/quiescent molecules, and phagocytosis (using flow cytometry, ELISA and fluorescently-labeled myelin). Effects of secreted products of differentially activated microglia on B-cell survival and activation were further studied. FINDINGS: Secreted products of MS-implicated pro-inflammatory B cells (but not IL-10 expressing B cells) substantially induce pro-inflammatory cytokine (IL-12, IL-6, TNFα) expression by both human microglia and macrophage (in a GM-CSF dependent manner), while down-regulating their expression of IL-10 and of quiescence-associated molecules, and suppressing their myelin phagocytosis. In contrast, secreted products of IL-10 expressing B cells upregulate both human microglia and macrophage expression of quiescence-associated molecules and enhance their myelin phagocytosis. Secreted factors from pro-inflammatory microglia enhance B-cell activation. INTERPRETATION: Potential cross-talk between disease-relevant human B-cell subsets and both resident CNS microglia and infiltrating macrophages may propagate CNS-compartmentalized inflammation and injury associated with MS disease progression. These interaction represents an attractive therapeutic target for agents such as Bruton's tyrosine kinase inhibitors (BTKi) that modulate responses of both B cells and myeloid cells. FUNDING: Stated in Acknowledgments section of manuscript.

17.
Cell Host Microbe ; 31(9): 1507-1522.e5, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37708853

ABSTRACT

Spontaneous transcription and translation of HIV can persist during suppressive antiretroviral therapy (ART). The quantity, phenotype, and biological relevance of this spontaneously "active" reservoir remain unclear. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization (FISH), we detect active HIV transcription in 14/18 people with HIV on suppressive ART, with a median of 28/million CD4+ T cells. While these cells predominantly exhibit abortive transcription, p24-expressing cells are evident in 39% of participants. Phenotypically diverse, active reservoirs are enriched in central memory T cells and CCR6- and activation-marker-expressing cells. The magnitude of the active reservoir positively correlates with total HIV-specific CD4+ and CD8+ T cell responses and with multiple HIV-specific T cell clusters identified by unsupervised analysis. These associations are particularly strong with p24-expressing active reservoir cells. Single-cell vDNA sequencing shows that active reservoirs are largely dominated by defective proviruses. Our data suggest that these reservoirs maintain HIV-specific CD4+ and CD8+ T responses during suppressive ART.


Subject(s)
CD8-Positive T-Lymphocytes , Proviruses , Humans , In Situ Hybridization, Fluorescence , Phenotype , CD4-Positive T-Lymphocytes
18.
Acta Neuropathol Commun ; 11(1): 108, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37408029

ABSTRACT

Oligodendrocyte (OL) injury and loss are central features of evolving lesions in multiple sclerosis. Potential causative mechanisms of OL loss include metabolic stress within the lesion microenvironment. Here we use the injury response of primary human OLs (hOLs) to metabolic stress (reduced glucose/nutrients) in vitro to help define the basis for the in situ features of OLs in cases of MS. Under metabolic stress in vitro, we detected reduction in ATP levels per cell that precede changes in survival. Autophagy was initially activated, although ATP levels were not altered by inhibitors (chloroquine) or activators (Torin-1). Prolonged stress resulted in autophagy failure, documented by non-fusion of autophagosomes and lysosomes. Consistent with our in vitro results, we detected higher expression of LC3, a marker of autophagosomes in OLs, in MS lesions compared to controls. Both in vitro and in situ, we observe a reduction in nuclear size of remaining OLs. Prolonged stress resulted in increased ROS and cleavage of spectrin, a target of Ca2+-dependent proteases. Cell death was however not prevented by inhibitors of ferroptosis or MPT-driven necrosis, the regulated cell death (RCD) pathways most likely to be activated by metabolic stress. hOLs have decreased expression of VDAC1, VDAC2, and of genes regulating iron accumulation and cyclophilin. RNA sequencing analyses did not identify activation of these RCD pathways in vitro or in MS cases. We conclude that this distinct response of hOLs, including resistance to RCD, reflects the combined impact of autophagy failure, increased ROS, and calcium influx, resulting in metabolic collapse and degeneration of cellular structural integrity. Defining the basis of OL injury and death provides guidance for development of neuro-protective strategies.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Reactive Oxygen Species/metabolism , Oligodendroglia/pathology , Cell Death , Multiple Sclerosis, Chronic Progressive/pathology , Adenosine Triphosphate/metabolism
19.
Acta Neuropathol Commun ; 11(1): 121, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491291

ABSTRACT

Ferroptosis is a form of lipid peroxidation-mediated cell death and damage triggered by excess iron and insufficiency in the glutathione antioxidant pathway. Oxidative stress is thought to play a crucial role in progressive forms of multiple sclerosis (MS) in which iron deposition occurs. In this study we assessed if ferroptosis plays a role in a chronic form of experimental autoimmune encephalomyelitis (CH-EAE), a mouse model used to study MS. Changes were detected in the mRNA levels of several ferroptosis genes in CH-EAE but not in relapsing-remitting EAE. At the protein level, expression of iron importers is increased in the earlier stages of CH-EAE (onset and peak). While expression of hemoxygenase-1, which mobilizes iron from heme, likely from phagocytosed material, is increased in macrophages at the peak and progressive stages. Excess iron in cells is stored safely in ferritin, which increases with disease progression. Harmful, redox active iron is released from ferritin when shuttled to autophagosomes by 'nuclear receptor coactivator 4' (NCOA4). NCOA4 expression increases at the peak and progressive stages of CH-EAE and accompanied by increase in redox active ferrous iron. These changes occur in parallel with reduction in the antioxidant pathway (system xCT, glutathione peroxidase 4 and glutathione), and accompanied by increased lipid peroxidation. Mice treated with a ferroptosis inhibitor for 2 weeks starting at the peak of CH-EAE paralysis, show significant improvements in function and pathology. Autopsy samples of tissue sections of secondary progressive MS (SPMS) showed NCOA4 expression in macrophages and oligodendrocytes along the rim of mixed active/inactive lesions, where ferritin+ and iron containing cells are located. Cells expressing NCOA4 express less ferritin, suggesting ferritin degradation and release of redox active iron, as indicated by increased lipid peroxidation. These data suggest that ferroptosis is likely to contribute to pathogenesis in CH-EAE and SPMS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Ferroptosis , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Antioxidants , Iron/metabolism , Ferritins/metabolism , Glutathione/metabolism
20.
Front Neurol ; 14: 1197212, 2023.
Article in English | MEDLINE | ID: mdl-37483447

ABSTRACT

With a rapidly aging global population and improvement of outcomes with newer multiple sclerosis (MS)-specific disease-modifying therapies (DMTs), the epidemiology of MS has shifted to an older than previously described population, with a peak prevalence of the disease seen in the 55-65 years age group. Changes in the pathophysiology of MS appear to be age-dependent. Several studies have identified a consistent phase of disability worsening around the fifth decade of life. The latter appears to be independent of prior disease duration and inflammatory activity and concomitant to pathological changes from acute focal active demyelination to chronic smoldering plaques, slow-expanding lesions, and compartmentalized inflammation within the central nervous system (CNS). On the other hand, decreased CNS tissue reserve and poorer remyelinating capacity with aging lead to loss of relapse recovery potential. Aging with MS may imply longer exposure to DMTs, although treatment efficacy in patients >55 years has not been evaluated in pivotal randomized controlled trials and appears to decrease with age. Older individuals are more prone to adverse effects of DMTs, an important aspect of treatment individualization. Aging with MS also implies a higher global burden of comorbid illnesses that contribute to overall impairments and represent a crucial confounder in interpreting clinical worsening. Discontinuation of DMTs after age 55, when no evidence of clinical or radiological activity is detected, is currently under the spotlight. In this review, we will discuss the impact of aging on MS pathobiology, the effect of comorbidities and other confounders on clinical worsening, and focus on current therapeutic considerations in this age group.

SELECTION OF CITATIONS
SEARCH DETAIL