Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
1.
Nanoscale ; 16(28): 13525-13533, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38946392

ABSTRACT

Molybdenum disulfide (MoS2) attracts the attention of the scientific community due to its thickness dependent properties. To fully exploit these features, it is necessary to produce the material in mono or few-layers on a large scale. Several methodologies have been developed for this purpose, the most promising one being liquid phase exfoliation (LPE). LPE allows obtaining good quality exfoliated MoS2 in a simple and scalable manner. Herein we report the simultaneous exfoliation and functionalization of MoS2 in chloroform using a specific porphyrin, namely tetrapyridyl porphyrin. We have corroborated that the exfoliation of MoS2 in the volatile solvent increases in the presence of the porphyrin due to the different interactions between them, obtaining dispersions with good concentrations. Additionally, the optical properties of the porphyrin are modified by these interactions. The characterization carried out by several techniques supports the hypothesis that the interactions occur through the pyridyl rings of the porphyrin and the molybdenum atoms of the material.

2.
ACS Sustain Chem Eng ; 12(24): 9133-9143, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38910878

ABSTRACT

The persistence of photoresist residues from microfabrication procedures causes significant obstacles in the technological advancement of graphene-based electronic devices. These residues induce undesired chemical doping effects, diminish carrier mobility, and deteriorate the signal-to-noise ratio, making them critical in certain contexts, including sensing and electrical recording applications. In graphene solution-gated field-effect transistors (gSGFETs), the presence of polymer contaminants makes it difficult to perform precise electrical measurements, introducing response variability and calibration challenges. Given the absence of viable short to midterm alternatives to polymer-intensive microfabrication techniques, a postpatterning treatment involving THF and ethanol solvents was evaluated, with ethanol being the most effective, environmentally sustainable, and safe method for residue removal. Employing a comprehensive analysis with XPS, AFM, and Raman spectroscopy, together with electrical characterization, we investigated the influence of residual polymers on graphene surface properties and transistor functionality. Ethanol treatment exhibited a pronounced enhancement in gSGFET performance, as evidenced by a shift in the charge neutrality point and reduced dispersion. This systematic cleaning methodology holds the potential to improve the reproducibility and precision in the manufacturing of graphene devices. Particularly, by using ethanol for residue removal, we align our methodology with the principles of green chemistry, minimizing environmental impact while advancing diverse graphene technology applications.

3.
ACS Appl Mater Interfaces ; 16(27): 35484-35493, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934218

ABSTRACT

Noncontact optical nanothermometers operating within the biological transparency windows are required to study temperature-sensitive biological phenomena at the nanoscale. Nanoparticles containing rare-earth ions such as Nd3+ have been reported to be efficient luminescence-based ratiometric thermometers, however often limited by poor water solubility and concentration-related quenching effects. Herein, we introduce a new type of nanothermometer, obtained by employing low-dimensional carbon nanodots (CNDs) as matrices to host Nd3+ ions (NdCNDs). By means of a one-pot procedure, small (∼7-12 nm), water-soluble nanoparticles were obtained, with high (15 wt %) Nd3+ loading. This stable metal-CND system features temperature-dependent photoluminescence in the second biological window (BW II) upon irradiation at 808 nm, thereby allowing accurate and reversible (heating/cooling) temperature measurements with good sensitivity and thermal resolution. The system possesses remarkable biocompatibility in vitro and promising performance at a high penetration depth in tissue models.

4.
ACS Appl Mater Interfaces ; 16(27): 34467-34479, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38936818

ABSTRACT

Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Electric Conductivity , Hydrogels , Myocytes, Cardiac , Polymers , Animals , Mice , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Polymers/chemistry , Polymers/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Hydrogels/chemistry , Hydrogels/pharmacology , Polyvinyl Alcohol/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Gallic Acid/chemistry , Gallic Acid/pharmacology
5.
J Hazard Mater ; 473: 134686, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788582

ABSTRACT

Hexagonal boron nitride (hBN) is an emerging two-dimensional material attracting considerable attention in the industrial sector given its innovative physicochemical properties. Potential risks are associated mainly with occupational exposure where inhalation and skin contact are the most relevant exposure routes for workers. Here we aimed at characterizing the effects induced by composites of thermoplastic polyurethane (TPU) and hBN, using immortalized HaCaT skin keratinocytes and BEAS-2B bronchial epithelial cells. The composite was abraded using a Taber® rotary abraser and abraded TPU and TPU-hBN were also subjected to photo-Fenton-mediated degradation mimicking potential weathering across the product life cycle. Cells were exposed to the materials for 24 h (acute exposure) or twice per week for 4 weeks (chronic exposure) and evaluated with respect to material internalization, cytotoxicity, and proinflammatory cytokine secretion. Additionally, comprehensive mass spectrometry-based proteomics and metabolomics (secretomics) analyses were performed. Overall, despite evidence of cellular uptake of the material, no significant cellular and/or protein expression profiles alterations were observed after acute or chronic exposure of HaCaT or BEAS-2B cells, identifying only few pro-inflammatory proteins. Similar results were obtained for the degraded materials. These results support the determination of hazard profiles associated with cutaneous and pulmonary hBN-reinforced polymer composites exposure.


Subject(s)
Boron Compounds , Polyurethanes , Humans , Polyurethanes/toxicity , Polyurethanes/chemistry , Boron Compounds/chemistry , Boron Compounds/toxicity , Cell Line , Skin/drug effects , Skin/metabolism , Lung/drug effects , Lung/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cytokines/metabolism , Cell Survival/drug effects
6.
ACS Appl Mater Interfaces ; 16(21): 27209-27223, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747220

ABSTRACT

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br- oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO's intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO-PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

7.
Nanoscale ; 16(12): 5926-5940, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38441238

ABSTRACT

Organic chemists have made and are still making enormous efforts toward the development of novel green catalytic synthesis. The necessity arises from the imperative of safeguarding human health and the environment, while ensuring efficient and sustainable chemical production. Within this context, electrocatalysis provides a framework for the design of new organic reactions under mild conditions. Undoubtedly, nanostructured materials are under the spotlight as the most popular and in most cases efficient platforms for advanced organic electrosynthesis. This Minireview focuses on the recent developments in the use of nanostructured electrocatalysts, highlighting the correlation between their chemical structures and resulting catalytic abilities, and pointing to future perspectives for their application in cutting-edge areas.

8.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38350010

ABSTRACT

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

9.
Angew Chem Int Ed Engl ; 63(5): e202316915, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38059678

ABSTRACT

The surface of Carbon Nanodots (CNDs) stands as a rich chemical platform, able to regulate the interactions between particles and external species. Performing selective functionalization of these nanoscale entities is of practical importance, however, it still represents a considerable challenge. In this work, we exploited the organic chemistry toolbox to install target functionalities on the CND surface, while monitoring the chemical changes on the material's outer shell through nuclear magnetic resonance spectroscopy. Following this, we investigated the use of click chemistry to covalently connect CNDs of different nature en-route towards covalent suprastructures with unprecedent molecular control. The different photophysical properties of the connected particles allowed their optical communication in the excited state. This work paves the way for the development of selective and addressable CND building blocks which can act as modular nanoscale synthons that mirror the long-established reactivity of molecular organic synthesis.

10.
Nanoscale ; 16(3): 1304-1311, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38131206

ABSTRACT

Carbon nitride (C3N4) is an innovative material with a high potential in many applications including energy storage, catalysis, composites, and biomedicine. C3N4 appears remarkably interesting not only for its properties but also because its simple preparation routes involve low-cost starting materials and reagents. However, there is still a lack of information on its degradability. For this reason, in this study, we evaluate the environmental persistence of C3N4 and its oxidized form by applying the photo-Fenton reaction. The morphological and structural changes of both materials were monitored by transmission electron microscopy and Raman spectroscopy respectively. In addition, electrochemical impedance spectroscopy has been used as an original technique to validate the degradation process of C3N4.

11.
Chem Commun (Camb) ; 60(5): 602-605, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38099872

ABSTRACT

In this paper, the synthesis of a novel tetra-phenol π-extended dihydrophenazine is reported. The obtained derivative presents marked reducing properties in the excited state and was exploited as an organo-photocatalyst in dehalogenation and C-C bond formation reactions. These results underline the great potential of functionalized π-extended dihydrophenazines as organo-photocatalysts.

12.
Small ; : e2308857, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072781

ABSTRACT

Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial impact on biosensing performance. Previous efforts are focused on simplifying the attachment procedure from standard multi-step to single-step strategies, but they still suffer from overreaction, and impurity issues and are limited to a particular ligand. Herein, a novel strategy for single-step immobilization of chemically modified aptamers with fluorenylmethyl and acridine moieties, based on a straightforward synthetic route to overcome the aforementioned limitations is presented. This approach is benchmarked versus a standard multi-step strategy using thrombin as detection model. In order to assess the reliability of the functionalization strategies 48-gSGFETs arrays are employed to acquire large datasets with multiple replicas. Graphene surface characterization demonstrates robust and higher efficiency in the chemical coupling of the aptamers with the single-step strategy, while the electrical response evaluation validates the sensing capability, allowing to implement different alternatives for data analysis and reduce the sensing variability. In this work, a new tool capable of overcome the functionalization challenges of graphene surfaces is provided, paving the way toward the standardization of gSGFETs for biosensing purposes.

13.
Nanoscale ; 15(41): 16650-16657, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37789811

ABSTRACT

In the last decade, solution-gated graphene field effect transistors (GFETs) showed their versatility in the development of a miniaturized multiplexed platform for electrophysiological recordings and sensing. Due to their working mechanism, the surface functionalisation and immobilisation of receptors are pivotal to ensure the proper functioning of devices. Herein, we present a controlled covalent functionalisation strategy based on molecular design and electrochemical triggering, which provide a monolayer-like functionalisation of micro-GFET arrays retaining the electronic properties of graphenes. The functionalisation layer as a receptor was then employed as the linker for serotonin aptamer conjugation. The micro-GFET arrays display sensitivity toward the target analyte in the micromolar range in a physiological buffer (PBS 10 mM). The sensor allows the in-flow real-time monitoring of serotonin transient concentrations with fast and reversible responses.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Graphite/chemistry , Serotonin , Transistors, Electronic , Aptamers, Nucleotide/chemistry
14.
Nanoscale Adv ; 5(21): 5974-5982, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881717

ABSTRACT

Carbon nanodots, a family of carbon-based nanomaterials, have been synthesized through different methods from various resources, affecting the properties of the resulting product and their application. Herein, carbon nanodots (CNDs) were synthesized with a green and simple hydrothermal method from sage leaves at 200 °C for 6 hours. The obtained CNDs are well dispersed in water with a negative surface charge (ζ-potential = -11 mV) and an average particle size of 3.6 nm. The synthesized CNDs showed concentration-dependent anticancer activity toward liver cancer (Hep3B) cell lines and decreased the viability of the cancer cells to 23% at the highest used concentration (250 µg ml-1 of CNDs). More interestingly, the cytotoxicity of the CNDs was tested in normal liver cell lines (LX2) revealed that the CNDs at all tested concentrations didn't affect their viability including at the highest concentration showing a viability of 86.7%. The cellular uptake mechanisms of CNDs were investigated and they are thought to be through energy-dependent endocytosis and also through passive diffusion. The main mechanisms of endocytosis were lipid and caveolae-mediated endocytosis. In addition, the CNDs have hindered the formation of 3D spheroids from the Hep3B hepatocellular carcinoma cell line. Hence, it would be concluded that the synthesized CNDs from sage are more highly selective to liver cancer cells than normal ones. The CNDs' cancer-killing ability would be referred to as the production of reactive oxygen species.

15.
Angew Chem Int Ed Engl ; 62(48): e202313540, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37801043

ABSTRACT

Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.

16.
Commun Chem ; 6(1): 174, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612431

ABSTRACT

Using metal coordination to assemble carbon nanodots (CND) into clusters can enhance their photophysical properties for applications in sensing and biomedicine. Water-soluble clusters of CNDs are prepared by one-step microwave synthesis starting from ethylenediaminetetraacetic acid, ethylenediamine and MnCl2·4H2O as precursors. Transmission electron microscopy and powder X-Ray diffraction techniques indicate that the resulting clusters form spherical particles of 150 nm constituted by amorphous CNDs joined together with Mn ions in a laminar crystalline structure. The nanomaterial assemblies show remarkable fluorescence quantum yields (0.17-0.20) and magnetic resonance imaging capability (r1 = 2.3-3.8 mM-1.s-1). In addition, they can be stabilized in aqueous solutions by phosphate ligands, providing a promising dual imaging platform for use in biological systems.

17.
Small ; 19(31): e2304703, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37533137
18.
Nanoscale ; 15(35): 14423-14438, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37623815

ABSTRACT

The increasing use of graphene-related materials (GRMs) in many technological applications, ranging from electronics to biomedicine, needs a careful evaluation of their impact on human health. Skin contact can be considered one of the most relevant exposure routes to GRMs. Hence, this study is focused on two main adverse outcomes at the skin level, irritation and corrosion, assessed following two specific Test Guidelines (TGs) defined by the Organization for Economic Co-operation and Development (OECD) (439 and 431, respectively) that use an in vitro 3D reconstructed human epidermis (RhE) model. After the evaluation of their suitability to test a large panel of powdered GRMs, it was found that the latter were not irritants or corrosive. Only GRMs prepared with irritant surfactants, not sufficiently removed, reduced RhE viability at levels lower than those predicting skin irritation (≤50%, after 42 min exposure followed by 42 h recovery), but not at levels lower than those predicting corrosion (<50%, after 3 min exposure or <15% after 1 h exposure). As an additional readout, a hierarchical clustering analysis on a panel of inflammatory mediators (interleukins: IL-1α, IL-1ß, IL-6, and IL-18; tumor necrosis factor-α and prostaglandin E2) released by RhE exposed to these materials supported the lack of irritant and pro-inflammatory properties. Overall, these results demonstrate that both TGs are useful in assessing GRMs for their irritant or corrosion potential, and that the tested materials did not cause these adverse effects at the skin level. Only GRMs prepared using toxic surfactants, not adequately removed, turned out to be skin irritants.


Subject(s)
Graphite , Humans , Graphite/toxicity , Corrosion , Epidermis , Skin , Cluster Analysis
19.
ACS Nano ; 17(14): 13811-13825, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37399106

ABSTRACT

Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.


Subject(s)
Atherosclerosis , Nanoparticles , Plaque, Atherosclerotic , Animals , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Atherosclerosis/diagnostic imaging , Atherosclerosis/drug therapy , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry
20.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37409444

ABSTRACT

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL