Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 166(5): 772-786.e14, 2024 05.
Article in English | MEDLINE | ID: mdl-38272100

ABSTRACT

BACKGROUND & AIMS: Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS: We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS: The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS: Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.


Subject(s)
Energy Metabolism , Fatty Acids , Metaplasia , Organoids , Proto-Oncogene Proteins p21(ras) , Stomach Neoplasms , Animals , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Fatty Acids/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Organoids/metabolism , Mice , Disease Models, Animal , Carcinogenesis/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Chief Cells, Gastric/metabolism , Chief Cells, Gastric/pathology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/genetics , Mice, Transgenic , Glycolysis , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/genetics , Disease Progression , Precancerous Conditions/pathology , Precancerous Conditions/metabolism , Precancerous Conditions/genetics
2.
Gastroenterology ; 163(4): 875-890, 2022 10.
Article in English | MEDLINE | ID: mdl-35700772

ABSTRACT

BACKGROUND & AIMS: Dysplasia carries a high risk of cancer development; however, the cellular mechanisms for dysplasia evolution to cancer are obscure. We have previously identified 2 putative dysplastic stem cell (DSC) populations, CD44v6neg/CD133+/CD166+ (double positive [DP]) and CD44v6+/CD133+/CD166+ (triple positive [TP]), which may contribute to cellular heterogeneity of gastric dysplasia. Here, we investigated functional roles and cell plasticity of noncancerous Trop2+/CD133+/CD166+ DSCs initially developed in the transition from precancerous metaplasia to dysplasia in the stomach. METHODS: Dysplastic organoids established from active Kras-induced mouse stomachs were used for transcriptome analysis, in vitro differentiation, and in vivo tumorigenicity assessments of DSCs. Cell heterogeneity and genetic alterations during clonal evolution of DSCs were examined by next-generation sequencing. Tissue microarrays were used to identify DSCs in human dysplasia. We additionally evaluated the effect of casein kinase 1 alpha (CK1α) regulation on the DSC activities using both mouse and human dysplastic organoids. RESULTS: We identified a high similarity of molecular profiles between DP- and TP-DSCs, but more dynamic activities of DP-DSCs in differentiation and survival for maintaining dysplastic cell lineages through Wnt ligand-independent CK1α/ß-catenin signaling. Xenograft studies demonstrated that the DP-DSCs clonally evolve toward multiple types of gastric adenocarcinomas and promote cancer cell heterogeneity by acquiring additional genetic mutations and recruiting the tumor microenvironment. Last, growth and survival of both mouse and human dysplastic organoids were controlled by targeting CK1α. CONCLUSIONS: These findings indicate that the DSCs are de novo gastric cancer-initiating cells responsible for neoplastic transformation and a promising target for intervention in early induction of gastric cancer.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Animals , Casein Kinase I/metabolism , Cell Plasticity , Cell Transformation, Neoplastic/pathology , Gastric Mucosa/pathology , Humans , Hyperplasia/pathology , Ligands , Mice , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Stem Cells/metabolism , Stomach Neoplasms/pathology , Tumor Microenvironment , beta Catenin/metabolism
3.
Cell Mol Gastroenterol Hepatol ; 13(1): 199-217, 2022.
Article in English | MEDLINE | ID: mdl-34455107

ABSTRACT

BACKGROUND & AIMS: Metaplasia in the stomach is highly associated with development of intestinal-type gastric cancer. Two types of metaplasias, spasmolytic polypeptide-expressing metaplasia (SPEM) and intestinal metaplasia (IM), are considered precancerous lesions. However, it remains unclear how SPEM and IM are related. Here we investigated a new lineage-specific marker for SPEM cells, aquaporin 5 (AQP5), to assist in the identification of these 2 metaplasias. METHODS: Drug- or Helicobacter felis (H felis) infection-induced mouse models were used to identify the expression pattern of AQP5 in acute or chronic SPEM. Gene-manipulated mice treated with or without drug were used to investigate how AQP5 expression is regulated in metaplastic lesions. Metaplastic samples from transgenic mice and human gastric cancer patients were evaluated for AQP5 expression. Immunostaining with lineage-specific markers was used to differentiate metaplastic gland characteristics. RESULTS: Our results revealed that AQP5 is a novel lineage-specific marker for SPEM cells that are localized at the base of metaplastic glands initially and expand to dominate glands after chronic H felis infection. In addition, AQP5 expression was up-regulated early in chief cell reprogramming and was promoted by interleukin 13. In humans, metaplastic corpus showed highly branched structures with AQP5-positive SPEM. Human SPEM cells strongly expressing AQP5 were present at the bases of incomplete IM glands marked by TROP2 but were absent from complete IM glands. CONCLUSIONS: AQP5-expressing SPEM cells are present in pyloric metaplasia and TROP2-positive incomplete IM and may be an important component of metaplasia that can predict a higher risk for gastric cancer development.


Subject(s)
Aquaporin 5 , Peptides , Animals , Aquaporin 5/genetics , Aquaporin 5/metabolism , Humans , Intercellular Signaling Peptides and Proteins , Metaplasia , Mice , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...