Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 97: 103253, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38968907

ABSTRACT

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.

2.
Radiol Med ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724697

ABSTRACT

PURPOSE: To investigate the feasibility of an artificial intelligence (AI)-based semi-automated segmentation for the extraction of ultrasound (US)-derived radiomics features in the characterization of focal breast lesions (FBLs). MATERIAL AND METHODS: Two expert radiologists classified according to US BI-RADS criteria 352 FBLs detected in 352 patients (237 at Center A and 115 at Center B). An AI-based semi-automated segmentation was used to build a machine learning (ML) model on the basis of B-mode US of 237 images (center A) and then validated on an external cohort of B-mode US images of 115 patients (Center B). RESULTS: A total of 202 of 352 (57.4%) FBLs were benign, and 150 of 352 (42.6%) were malignant. The AI-based semi-automated segmentation achieved a success rate of 95.7% for one reviewer and 96% for the other, without significant difference (p = 0.839). A total of 15 (4.3%) and 14 (4%) of 352 semi-automated segmentations were not accepted due to posterior acoustic shadowing at B-Mode US and 13 and 10 of them corresponded to malignant lesions, respectively. In the validation cohort, the characterization made by the expert radiologist yielded values of sensitivity, specificity, PPV and NPV of 0.933, 0.9, 0.857, 0.955, respectively. The ML model obtained values of sensitivity, specificity, PPV and NPV of 0.544, 0.6, 0.416, 0.628, respectively. The combined assessment of radiologists and ML model yielded values of sensitivity, specificity, PPV and NPV of 0.756, 0.928, 0.872, 0.855, respectively. CONCLUSION: AI-based semi-automated segmentation is feasible, allowing an instantaneous and reproducible extraction of US-derived radiomics features of FBLs. The combination of radiomics and US BI-RADS classification led to a potential decrease of unnecessary biopsy but at the expense of a not negligible increase of potentially missed cancers.

3.
Eur Radiol Exp ; 8(1): 26, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438821

ABSTRACT

An increasingly strong connection between artificial intelligence and medicine has enabled the development of predictive models capable of supporting physicians' decision-making. Artificial intelligence encompasses much more than machine learning, which nevertheless is its most cited and used sub-branch in the last decade. Since most clinical problems can be modeled through machine learning classifiers, it is essential to discuss their main elements. This review aims to give primary educational insights on the most accessible and widely employed classifiers in radiology field, distinguishing between "shallow" learning (i.e., traditional machine learning) algorithms, including support vector machines, random forest and XGBoost, and "deep" learning architectures including convolutional neural networks and vision transformers. In addition, the paper outlines the key steps for classifiers training and highlights the differences between the most common algorithms and architectures. Although the choice of an algorithm depends on the task and dataset dealing with, general guidelines for classifier selection are proposed in relation to task analysis, dataset size, explainability requirements, and available computing resources. Considering the enormous interest in these innovative models and architectures, the problem of machine learning algorithms interpretability is finally discussed, providing a future perspective on trustworthy artificial intelligence.Relevance statement The growing synergy between artificial intelligence and medicine fosters predictive models aiding physicians. Machine learning classifiers, from shallow learning to deep learning, are offering crucial insights for the development of clinical decision support systems in healthcare. Explainability is a key feature of models that leads systems toward integration into clinical practice. Key points • Training a shallow classifier requires extracting disease-related features from region of interests (e.g., radiomics).• Deep classifiers implement automatic feature extraction and classification.• The classifier selection is based on data and computational resources availability, task, and explanation needs.


Subject(s)
Artificial Intelligence , Deep Learning , Algorithms , Machine Learning , Neural Networks, Computer
4.
J Imaging Inform Med ; 37(3): 1038-1053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351223

ABSTRACT

Breast microcalcifications are observed in 80% of mammograms, and a notable proportion can lead to invasive tumors. However, diagnosing microcalcifications is a highly complicated and error-prone process due to their diverse sizes, shapes, and subtle variations. In this study, we propose a radiomic signature that effectively differentiates between healthy tissue, benign microcalcifications, and malignant microcalcifications. Radiomic features were extracted from a proprietary dataset, composed of 380 healthy tissue, 136 benign, and 242 malignant microcalcifications ROIs. Subsequently, two distinct signatures were selected to differentiate between healthy tissue and microcalcifications (detection task) and between benign and malignant microcalcifications (classification task). Machine learning models, namely Support Vector Machine, Random Forest, and XGBoost, were employed as classifiers. The shared signature selected for both tasks was then used to train a multi-class model capable of simultaneously classifying healthy, benign, and malignant ROIs. A significant overlap was discovered between the detection and classification signatures. The performance of the models was highly promising, with XGBoost exhibiting an AUC-ROC of 0.830, 0.856, and 0.876 for healthy, benign, and malignant microcalcifications classification, respectively. The intrinsic interpretability of radiomic features, and the use of the Mean Score Decrease method for model introspection, enabled models' clinical validation. In fact, the most important features, namely GLCM Contrast, FO Minimum and FO Entropy, were compared and found important in other studies on breast cancer.


Subject(s)
Breast Neoplasms , Calcinosis , Mammography , Humans , Calcinosis/diagnostic imaging , Calcinosis/pathology , Female , Mammography/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast/diagnostic imaging , Breast/pathology , Machine Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Support Vector Machine , Breast Diseases/diagnostic imaging , Breast Diseases/pathology , Breast Diseases/diagnosis , Breast Diseases/classification , Radiomics
5.
Brain Sci ; 14(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38248300

ABSTRACT

Migraine is a burdensome neurological disorder that still lacks clear and easily accessible diagnostic biomarkers. Furthermore, a straightforward pathway is hard to find for migraineurs' management, so the search for response predictors has become urgent. Nowadays, artificial intelligence (AI) has pervaded almost every aspect of our lives, and medicine has not been missed. Its applications are nearly limitless, and the ability to use machine learning approaches has given researchers a chance to give huge amounts of data new insights. When it comes to migraine, AI may play a fundamental role, helping clinicians and patients in many ways. For example, AI-based models can increase diagnostic accuracy, especially for non-headache specialists, and may help in correctly classifying the different groups of patients. Moreover, AI models analysing brain imaging studies reveal promising results in identifying disease biomarkers. Regarding migraine management, AI applications showed value in identifying outcome measures, the best treatment choices, and therapy response prediction. In the present review, the authors introduce the various and most recent clinical applications of AI regarding migraine.

6.
Sensors (Basel) ; 23(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37420843

ABSTRACT

Melanoma is a malignant cancer type which develops when DNA damage occurs (mainly due to environmental factors such as ultraviolet rays). Often, melanoma results in intense and aggressive cell growth that, if not caught in time, can bring one toward death. Thus, early identification at the initial stage is fundamental to stopping the spread of cancer. In this paper, a ViT-based architecture able to classify melanoma versus non-cancerous lesions is presented. The proposed predictive model is trained and tested on public skin cancer data from the ISIC challenge, and the obtained results are highly promising. Different classifier configurations are considered and analyzed in order to find the most discriminating one. The best one reached an accuracy of 0.948, sensitivity of 0.928, specificity of 0.967, and AUROC of 0.948.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Dermoscopy/methods , Melanoma/diagnosis , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , DNA Damage
7.
Brain Sci ; 13(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37239276

ABSTRACT

BACKGROUND: Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv) is an adult-onset multisystemic disease, affecting the peripheral nerves, heart, gastrointestinal tract, eyes, and kidneys. Nowadays, several treatment options are available; thus, avoiding misdiagnosis is crucial to starting therapy in early disease stages. However, clinical diagnosis may be difficult, as the disease may present with unspecific symptoms and signs. We hypothesize that the diagnostic process may benefit from the use of machine learning (ML). METHODS: 397 patients referring to neuromuscular clinics in 4 centers from the south of Italy with neuropathy and at least 1 more red flag, as well as undergoing genetic testing for ATTRv, were considered. Then, only probands were considered for analysis. Hence, a cohort of 184 patients, 93 with positive and 91 (age- and sex-matched) with negative genetics, was considered for the classification task. The XGBoost (XGB) algorithm was trained to classify positive and negative TTR mutation patients. The SHAP method was used as an explainable artificial intelligence algorithm to interpret the model findings. RESULTS: diabetes, gender, unexplained weight loss, cardiomyopathy, bilateral carpal tunnel syndrome (CTS), ocular symptoms, autonomic symptoms, ataxia, renal dysfunction, lumbar canal stenosis, and history of autoimmunity were used for the model training. The XGB model showed an accuracy of 0.707 ± 0.101, a sensitivity of 0.712 ± 0.147, a specificity of 0.704 ± 0.150, and an AUC-ROC of 0.752 ± 0.107. Using the SHAP explanation, it was confirmed that unexplained weight loss, gastrointestinal symptoms, and cardiomyopathy showed a significant association with the genetic diagnosis of ATTRv, while bilateral CTS, diabetes, autoimmunity, and ocular and renal involvement were associated with a negative genetic test. CONCLUSIONS: Our data show that ML might potentially be a useful instrument to identify patients with neuropathy that should undergo genetic testing for ATTRv. Unexplained weight loss and cardiomyopathy are relevant red flags in ATTRv in the south of Italy. Further studies are needed to confirm these findings.

8.
Semin Ultrasound CT MR ; 44(3): 194-204, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37245884

ABSTRACT

Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal in the gastrointestinal tract and are the most common intestinal tumors. Usually GISTs are asymptomatic, especially small tumors that may not cause any symptoms and may be found accidentally on abdominal CT scans. Discovering of inhibitor of receptor tyrosine kinases has changed the outcome of patients with high-risk GISTs. This paper will focus on the role of imaging in diagnosis, characterization and follow-up. We shall also report our local experience in radiomics evaluation of GISTs.


Subject(s)
Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Radiomics , Humans , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Neoplasms/diagnosis , Tomography, X-Ray Computed/methods
9.
J Imaging ; 9(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36826951

ABSTRACT

Radiomic analysis allows for the detection of imaging biomarkers supporting decision-making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set of radiomic features is augmented by considering high-level features, such as wavelet transforms. However, several wavelets families (so called kernels) are able to generate different multi-resolution representations of the original image, and which of them produces more salient images is not yet clear. In this study, an in-depth analysis is performed by comparing different wavelet kernels and by evaluating their impact on predictive capabilities of radiomic models. A dataset composed of 1589 chest X-ray images was used for COVID-19 prognosis prediction as a case study. Random forest, support vector machine, and XGBoost were trained (on a subset of 1103 images) after a rigorous feature selection strategy to build-up the predictive models. Next, to evaluate the models generalization capability on unseen data, a test phase was performed (on a subset of 486 images). The experimental findings showed that Bior1.5, Coif1, Haar, and Sym2 kernels guarantee better and similar performance for all three machine learning models considered. Support vector machine and random forest showed comparable performance, and they were better than XGBoost. Additionally, random forest proved to be the most stable model, ensuring an appropriate balance between sensitivity and specificity.

SELECTION OF CITATIONS
SEARCH DETAIL
...