Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11765, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782958

ABSTRACT

In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.


Subject(s)
Alginates , Cartilage, Articular , Chitosan , Chondrocytes , Extracellular Matrix , Tissue Engineering , Chitosan/chemistry , Alginates/chemistry , Cartilage, Articular/metabolism , Cartilage, Articular/cytology , Animals , Extracellular Matrix/metabolism , Chondrocytes/metabolism , Chondrocytes/cytology , Tissue Engineering/methods , Biopolymers/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Tissue Scaffolds/chemistry , Lab-On-A-Chip Devices , Hydrogels/chemistry , Cells, Cultured , Cell Survival , Microphysiological Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...