Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Mov Disord Clin Pract ; 11(1): 76-85, 2024 Jan.
Article En | MEDLINE | ID: mdl-38291835

BACKGROUND: Variants in dehydrodolichol diphosphate synthetase (DHDDS) and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1) cause a neurodevelopmental disorder, classically with prominent epilepsy. Recent reports suggest a complex movement disorder and an overlapping phenotype has been postulated due to their combined role in dolichol synthesis. CASES: We describe three patients with heterozygous variants in DHDDS and five with variants affecting NUS1. They bear a remarkably similar phenotype of a movement disorder dominated by multifocal myoclonus. Diagnostic clues include myoclonus exacerbated by action and facial involvement, and slowly progressive or stable, gait ataxia with disproportionately impaired tandem gait. Myoclonus is confirmed with neurophysiology, including EMG of facial muscles. LITERATURE REVIEW: Ninety-eight reports of heterozygous variants in DHDDS, NUS1 and chromosome 6q22.1 structural alterations spanning NUS1, confirm the convergent phenotype of hypotonia at birth, developmental delay, multifocal myoclonus, ataxia, dystonia and later parkinsonism with or without generalized epilepsy. Other features include periodic exacerbations, stereotypies, anxiety, and dysmorphisms. Although their gene products contribute to dolichol biosynthesis, a key step in N-glycosylation, transferrin isoform profiles are typically normal. Imaging is normal or non-specific. CONCLUSIONS: Recognition of their shared phenotype may expedite diagnosis through chromosomal microarray and by including DHDDS/NUS1 in movement disorder gene panels.


Movement Disorders , Myoclonus , Infant, Newborn , Humans , Diphosphates , Phenotype , Ataxia , Dolichols/metabolism , Receptors, Cell Surface
2.
Orphanet J Rare Dis ; 16(1): 465, 2021 11 03.
Article En | MEDLINE | ID: mdl-34732213

BACKGROUND: Identification and characterisation of monogenic causes of complex neurological phenotypes are important for genetic counselling and prognostication. Bi-allelic pathogenic variants in the gene encoding GLRX5, a protein involved in the early steps of Fe-S cluster biogenesis, are rare and cause two distinct phenotypes: isolated sideroblastic anemia and a neurological phenotype with variant non-ketotic hyperglycinemia. In this study, we analysed the evolution of clinical and MRI findings and long-term outcome of patients with GLRX5 mutations. METHODS: Four patients from three Australian families of Lebanese descent were identified. All patients presented in childhood and were followed up into adult life through multiple clinical assessments. All were prescribed sodium benzoate. RESULTS: All patients (all females, age range 18-56 years) showed a complex neurological phenotype characterised by varying combinations of spastic paraparesis, length-dependent motor/sensory-motor axonal polyneuropathy, and psychiatric disturbances with variable intellectual disability. All had non-ketotic hyperglycinemia and a homozygous pathogenic c.151_153delAAG (p.K51del) change in GLRX5. Motor disability gradually progressed reaching moderate disability during adolescence and moderately severe disability during adult life. The major MRI finding was the upper cervical spinal cord signal changes with contrast enhancement noted in all and additional leukoencephalopathy in one. On follow up MRI, the white matter lesions diminished on a subsequent scan and then remained static over time. The spinal cord showed gliotic changes. Two patients have previously demonstrated low pyruvate dehydrogenase complex deficiency but none had plasma lactate elevation, nor biochemical evidence of branch-chain keto-dehydrogenase deficiency. Glycine levels reduced in patients that tolerated sodium benzoate, possibly stabilising clinical manifestations. CONCLUSIONS: This report demonstrates that the p.K51del GLRX5 variant causes a distinct and predictable neurological phenotype. The clinical assessments spanning from childhood to adult life enable physicians to infer the natural history of GLRX5 related neurological disorder. There may be widespread metabolic consequences, and optimal management is unknown.


Anemia, Sideroblastic , Disabled Persons , Motor Disorders , Adolescent , Adult , Australia , Female , Glutaredoxins/genetics , Humans , Middle Aged , Phenotype , Young Adult
3.
Neurol Genet ; 5(6): e367, 2019 Dec.
Article En | MEDLINE | ID: mdl-31872051

OBJECTIVE: The present study investigated the diagnostic yield of array comparative genomic hybridization (aCGH) in a large cohort of children with diverse neurologic disorders as seen in child neurology practice to test whether pathogenic copy number variants (CNVs) were more likely to be detected in specific neurologic phenotypes. METHODS: A retrospective cross-sectional analysis was performed on 555 children in whom a genetic etiology was suspected and who underwent whole-genome aCGH testing between 2006 and 2012. Neurologic phenotyping was performed using hospital medical records. An assessment of pathogenicity was made for each CNV, based on recent developments in the literature. RESULTS: Forty-seven patients were found to carry a pathogenic CNV, giving an overall diagnostic yield of 8.59%. Certain phenotypes predicted for the presence of a pathogenic CNV, including developmental delay (odds ratio [OR] 3.69 [1.30-10.51]), cortical visual impairment (OR 2.73 [1.18-6.28]), dysmorphism (OR 2.75 [1.38-5.50]), and microcephaly (OR 2.16 [1.01-4.61]). The combination of developmental delay/intellectual disability with dysmorphism and abnormal head circumference was also predictive for a pathogenic CNV (OR 2.86 [1.02-8.00]). For every additional clinical feature, there was an increased likelihood of detecting a pathogenic CNV (OR 1.18 [1.01-1.38]). CONCLUSIONS: The use of aCGH led to a pathogenic finding in 8.59% of patients. The results support the use of aCGH as a first tier investigation in children with diverse neurologic disorders, although whole-genome sequencing may replace aCGH as the detection method in the future. In particular, the yield was increased in children with developmental delay, dysmorphism, cortical visual impairment, and microcephaly.

4.
Epilepsia ; 60(5): 830-844, 2019 05.
Article En | MEDLINE | ID: mdl-30968951

OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.


Epilepsy/genetics , Mutation, Missense , NAV1.6 Voltage-Gated Sodium Channel/genetics , Anticonvulsants/therapeutic use , Ataxia/genetics , Child , Child, Preschool , Cognitive Dysfunction/genetics , Electroencephalography , Epilepsy/drug therapy , Epilepsy/physiopathology , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Intellectual Disability/genetics , Language Development Disorders/genetics , Movement Disorders/genetics , Muscle Hypotonia/genetics , Pedigree , Severity of Illness Index
5.
Hum Mutat ; 40(7): 893-898, 2019 07.
Article En | MEDLINE | ID: mdl-30981218

Leigh syndrome is a mitochondrial disease caused by pathogenic variants in over 85 genes. Whole exome sequencing of a patient with Leigh-like syndrome identified homozygous protein-truncating variants in two genes associated with Leigh syndrome; a reported pathogenic variant in PDHX (NP_003468.2:p.(Arg446*)), and an uncharacterized variant in complex I (CI) assembly factor TIMMDC1 (NP_057673.2:p.(Arg225*)). The TIMMDC1 variant was predicted to truncate 61 amino acids at the C-terminus and functional studies demonstrated a hypomorphic impact of the variant on CI assembly. However, the mutant protein could still rescue CI assembly in TIMMDC1 knockout cells and the patient's clinical phenotype was not clearly distinct from that of other patients with the same PDHX defect. Our data suggest that the hypomorphic effect of the TIMMDC1 protein-truncating variant does not constitute a dual diagnosis in this individual. We recommend cautious assessment of variants in the C-terminus of TIMMDC1 and emphasize the need to consider the caveats detailed within the American College of Medical Genetics and Genomics (ACMG) criteria when assessing variants.


Leigh Disease/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Sequence Deletion , Early Diagnosis , Gene Knockout Techniques , HEK293 Cells , Homozygote , Humans , Mitochondrial Precursor Protein Import Complex Proteins , Pyruvate Dehydrogenase Complex/genetics , Exome Sequencing
6.
Brain ; 142(1): 50-58, 2019 01 01.
Article En | MEDLINE | ID: mdl-30576410

Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.


Hydro-Lyases/deficiency , Neurodegenerative Diseases/genetics , Child, Preschool , Computer Simulation , Female , Fever/complications , Fever/metabolism , Fibroblasts/metabolism , Genetic Vectors , Humans , Hydro-Lyases/genetics , Infant , Kinetics , Lentivirus , Male , Mitochondria/metabolism , Mutation , NAD/analogs & derivatives , NAD/metabolism , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/metabolism , Primary Cell Culture , Whole Genome Sequencing
7.
Seizure ; 59: 132-140, 2018 Jul.
Article En | MEDLINE | ID: mdl-29852413

PURPOSE: To report our institutional experience of targeted massively parallel sequencing (MPS) testing in children with epilepsy. METHOD: We retrospectively analysed the yield of targeted epileptic encephalopathy (EE) panel of 71 known EE genes in patients with epilepsy of unknown cause, who underwent clinical triage by a group of neurologists prior to the testing. We compared cost of the EE panel approach compared to traditional evaluation in patients with identified pathogenic variants. RESULTS: The yield of pathogenic variants was 28.5% (n = 30/105), highest in early onset EE <3 months including Ohtahara syndrome (52%, n = 10/19) and lowest in generalized epilepsy (0/17). Patients identified with pathogenic variants had earlier onset of seizures (median 3.6 m vs 1.1y, p < 0.001, OR 0.6/year, P < 0.02) compared to those without pathogenic variants. Pathogenic/likely pathogenic variants were found in ALDH7A1 (2), CACNA1A (1), CDKL5 (3), FOXG1 (2), GABRB3 (1), GRIN2A (1), KCNQ2 (4), KCNQ3 (1), PRRT2 (1), SCN1A (6), SCN2A (2), SCN8A (2), SYNGAP1 (1), UBE3A (2) and WWOX (1) genes. This study expands the inheritance pattern caused by KCNQ3 mutations to include an autosomal recessive severe phenotype with neonatal seizures and severe developmental delay. The average cost of etiological evaluation was less with early use of EE panel compared to the traditional investigation approach ($5990 Australian dollars (AUD) vs $13069 AUD ; p = 0.02) among the patients with identified pathogenic variants. CONCLUSION: Targeted MPS testing is a comprehensive and economical investigation that enables early genetic diagnosis in children with EE. Careful clinical triage and selection of patients with young onset EE may maximize the yield of EE panel testing.


Epilepsy/diagnosis , Epilepsy/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Adolescent , Child , Child, Preschool , Cost-Benefit Analysis , Epilepsy/economics , Female , Genetic Predisposition to Disease , Genetic Testing/economics , Genetic Testing/methods , Genetic Variation , High-Throughput Nucleotide Sequencing/economics , Humans , Infant , Male , Phenotype , Retrospective Studies
8.
Pediatrics ; 135(4): e974-84, 2015 Apr.
Article En | MEDLINE | ID: mdl-25802349

BACKGROUND AND OBJECTIVES: Pediatric encephalitis has a wide range of etiologies, clinical presentations, and outcomes. This study seeks to classify and characterize infectious, immune-mediated/autoantibody-associated and unknown forms of encephalitis, including relative frequencies, clinical and radiologic phenotypes, and long-term outcome. METHODS: By using consensus definitions and a retrospective single-center cohort of 164 Australian children, we performed clinical and radiologic phenotyping blinded to etiology and outcomes, and we tested archived acute sera for autoantibodies to N-methyl-D-aspartate receptor, voltage-gated potassium channel complex, and other neuronal antigens. Through telephone interviews, we defined outcomes by using the Liverpool Outcome Score (for encephalitis). RESULTS: An infectious encephalitis occurred in 30%, infection-associated encephalopathy in 8%, immune-mediated/autoantibody-associated encephalitis in 34%, and unknown encephalitis in 28%. In descending order of frequency, the larger subgroups were acute disseminated encephalomyelitis (21%), enterovirus (12%), Mycoplasma pneumoniae (7%), N-methyl-D-aspartate receptor antibody (6%), herpes simplex virus (5%), and voltage-gated potassium channel complex antibody (4%). Movement disorders, psychiatric symptoms, agitation, speech dysfunction, cerebrospinal fluid oligoclonal bands, MRI limbic encephalitis, and clinical relapse were more common in patients with autoantibodies. An abnormal outcome occurred in 49% of patients after a median follow-up of 5.8 years. Herpes simplex virus and unknown forms had the worst outcomes. According to our multivariate analysis, an abnormal outcome was more common in patients with status epilepticus, magnetic resonance diffusion restriction, and ICU admission. CONCLUSIONS: We have defined clinical and radiologic phenotypes of infectious and immune-mediated/autoantibody-associated encephalitis. In this resource-rich cohort, immune-mediated/autoantibody-associated etiologies are common, and the recognition and treatment of these entities should be a clinical priority.


Autoantibodies/blood , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Encephalitis/diagnosis , Encephalitis/immunology , Adolescent , Autoantigens/immunology , Autoimmune Diseases/epidemiology , Brain/immunology , Brain/pathology , Child , Child, Preschool , Cross-Sectional Studies , Disability Evaluation , Encephalitis/epidemiology , Female , Follow-Up Studies , Humans , Infant , Magnetic Resonance Imaging , Male , Nerve Tissue Proteins/immunology , Outcome Assessment, Health Care , Potassium Channels, Voltage-Gated/immunology , Receptors, N-Methyl-D-Aspartate/immunology , Retrospective Studies
9.
Eur J Paediatr Neurol ; 19(3): 377-82, 2015 May.
Article En | MEDLINE | ID: mdl-25707871

Mild encephalopathy with a reversible splenial lesion (MERS) is a clinico-radiological syndrome characterized by a transient mild encephalopathy and a reversible lesion in the splenium of the corpus callosum on MRI. This syndrome has almost universally been described in children from Japan and East Asia. Here we describe seven cases of MERS occurring in Caucasian Australian children from one centre seen over a 3 year period. All patients had a fever-associated encephalopathy (n = 7), which presented with confusion (n = 4), irritability (n = 3), lethargy (n = 3), slurred speech (n = 3), drowsiness (n = 2) and hallucinations (n = 2). Other neurological symptoms included ataxia (n = 5) and seizures (n = 1). These symptoms resolved rapidly over 4-6 days followed by complete neurological recovery. In all patients, MRI performed within 1-3 days of onset of encephalopathy demonstrated a symmetrical diffusion-restricted lesion in the splenium of the corpus callosum. Three patients had additional lesions involving other parts of the corpus callosum and adjacent periventricular white matter. These same three patients had mild persisting white matter changes evident at followup MRI, while the other patients had complete resolution of radiological changes. A potential trigger was present in five of the seven cases: Kawasaki disease, Salmonella, cytomegalovirus, influenza B and adenovirus (all n = 1). Elevated white cell count (n = 4), elevated C reactive protein (n = 5) and hyponatremia (n = 6) were commonly observed. CSF was performed in four patients, which showed no pleocytosis. This case series of MERS demonstrates this condition occurs outside of East Asia and is an important differential to consider in children presenting with acute encephalopathy.


Brain Diseases/pathology , Australia , Brain Diseases/complications , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Male , Syndrome
10.
Am J Hum Genet ; 94(2): 209-22, 2014 Feb 06.
Article En | MEDLINE | ID: mdl-24462369

Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon.


Cytochrome-c Oxidase Deficiency/ethnology , Cytochrome-c Oxidase Deficiency/genetics , Founder Effect , Leigh Disease/ethnology , Leigh Disease/genetics , Mitochondrial Proteins/genetics , Chromosomes, Human, Pair 19/genetics , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytochrome-c Oxidase Deficiency/complications , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Female , Genetic Complementation Test , Genetic Linkage , Genome-Wide Association Study , Haplotypes , Homozygote , Humans , Infant , Lebanon , Leigh Disease/complications , Male , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Pedigree , Polymorphism, Single Nucleotide , Proteomics , Sequence Analysis, DNA
11.
Brain ; 137(Pt 2): 366-79, 2014 Feb.
Article En | MEDLINE | ID: mdl-24334290

Patients with nonketotic hyperglycinemia and deficient glycine cleavage enzyme activity, but without mutations in AMT, GLDC or GCSH, the genes encoding its constituent proteins, constitute a clinical group which we call 'variant nonketotic hyperglycinemia'. We hypothesize that in some patients the aetiology involves genetic mutations that result in a deficiency of the cofactor lipoate, and sequenced genes involved in lipoate synthesis and iron-sulphur cluster biogenesis. Of 11 individuals identified with variant nonketotic hyperglycinemia, we were able to determine the genetic aetiology in eight patients and delineate the clinical and biochemical phenotypes. Mutations were identified in the genes for lipoate synthase (LIAS), BolA type 3 (BOLA3), and a novel gene glutaredoxin 5 (GLRX5). Patients with GLRX5-associated variant nonketotic hyperglycinemia had normal development with childhood-onset spastic paraplegia, spinal lesion, and optic atrophy. Clinical features of BOLA3-associated variant nonketotic hyperglycinemia include severe neurodegeneration after a period of normal development. Additional features include leukodystrophy, cardiomyopathy and optic atrophy. Patients with lipoate synthase-deficient variant nonketotic hyperglycinemia varied in severity from mild static encephalopathy to Leigh disease and cortical involvement. All patients had high serum and borderline elevated cerebrospinal fluid glycine and cerebrospinal fluid:plasma glycine ratio, and deficient glycine cleavage enzyme activity. They had low pyruvate dehydrogenase enzyme activity but most did not have lactic acidosis. Patients were deficient in lipoylation of mitochondrial proteins. There were minimal and inconsistent changes in cellular iron handling, and respiratory chain activity was unaffected. Identified mutations were phylogenetically conserved, and transfection with native genes corrected the biochemical deficiency proving pathogenicity. Treatments of cells with lipoate and with mitochondrially-targeted lipoate were unsuccessful at correcting the deficiency. The recognition of variant nonketotic hyperglycinemia is important for physicians evaluating patients with abnormalities in glycine as this will affect the genetic causation and genetic counselling, and provide prognostic information on the expected phenotypic course.


Genetic Variation/genetics , Glutaredoxins/genetics , Hyperglycinemia, Nonketotic/genetics , Mutation/genetics , Proteins/genetics , Sulfurtransferases/genetics , Atrophy , Child , Child, Preschool , Fatal Outcome , Female , Glutaredoxins/chemistry , Humans , Hyperglycinemia, Nonketotic/diagnosis , Hyperglycinemia, Nonketotic/pathology , Infant , Male , Mitochondrial Proteins , Proteins/chemistry , Severity of Illness Index , Sulfurtransferases/chemistry
12.
Epilepsia ; 54(12): 2091-100, 2013 Dec.
Article En | MEDLINE | ID: mdl-24151870

PURPOSE: Potentially pathogenic autoantibodies are found increasingly in adults with seizure disorders, including focal seizures and those of unknown cause. In this study, we investigated a cohort of children with new-onset seizures to see whether there were autoantibodies and the relationship to any specific seizure or epilepsy type. METHODS: We prospectively recruited 114 children (2 months to 16 years) with new-onset seizures presenting between September 2009 and November 2011, as well as 65 controls. Patients were clinically assessed and classified according to the new International League Against Epilepsy (ILAE) organization of seizures and epilepsies classification system. Sera were tested for autoantibodies to a range of antigens, blind to the clinical and classification details. KEY FINDINGS: Eleven (9.7%) of 114 patients were positive for one or more autoantibodies compared to 3 of 65 controls (4.6%, p = ns). Patients had antibodies to the voltage-gated potassium channel (VGKC) complex (n = 4), contactin-associated protein-like 2 (CASPR2) (n = 3), N-methyl-d-aspartate receptors (NMDARs) (n = 2), or VGKC-complex and NMDAR (n = 2). None had antibodies to glutamic acid decarboxylase, contactin-2, or to glycine, 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl) propionic acid (AMPA), or γ-aminobutyric acid B receptors. Ten of these 11 patients were classified as having epilepsy according to the new ILAE organization of seizures and epilepsy. Although, there were no significant differences in the demographic and clinical features between antibody-positive and antibody-negative patients, the classification of "unknown cause" was higher in the antibody positive (7/10; 70%) compared with the antibody negative subjects (23/86; 26.7%; p = 0.0095, Fisher's exact test). Furthermore, four of these seven patients with epilepsy (57.1%) were classified as having predominantly focal seizures compared with 12 of the 86 antibody-negative patients (13.9%; p = 0.015). SIGNIFICANCE: Because autoantibodies were more frequent in pediatric patients with new-onset epilepsy of "unknown cause," often with focal epilepsy features, this group of children may benefit most from autoantibody screening and consideration of immune therapy.


Autoantibodies/immunology , Autoimmune Diseases of the Nervous System/immunology , Epilepsy/immunology , Neurons/immunology , Seizures/immunology , Adolescent , Antigens/immunology , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Prospective Studies
13.
Mitochondrion ; 11(1): 104-7, 2011 Jan.
Article En | MEDLINE | ID: mdl-20708716

Mutations in the polymerase γ (POLG) gene are among the most common causes of mitochondrial disease and more than 160 POLG mutations have been reported. However, a large proportion of patients suspected of having POLG mutations only have one (heterozygous) definitive pathogenic mutation identified. Using oligonucleotide array CGH, we identified a compound heterozygous large intragenic deletion encompassing exons 15-21 of this gene in a child with Alpers syndrome due to mtDNA depletion. This is the first large POLG deletion reported and the findings show the clinical utility of using array CGH in cases where a single heterozygous mutation has been identified in POLG.


Comparative Genomic Hybridization/methods , DNA-Directed DNA Polymerase/genetics , Diffuse Cerebral Sclerosis of Schilder/genetics , Mutation , Oligonucleotide Array Sequence Analysis/methods , Child, Preschool , DNA Polymerase gamma , DNA, Mitochondrial/genetics , Exons/genetics , Fatal Outcome , Female , Heterozygote , Humans
14.
Pediatr Neurol ; 37(4): 283-6, 2007 Oct.
Article En | MEDLINE | ID: mdl-17903674

Late-onset nonketotic hyperglycinemia is very rare, presents with varied clinical features, and may be underdiagnosed. A 2-year-old girl with normal development had acute gait disturbance progressing to severe spastic diplegia. Plasma glycine levels were elevated, with a normal cerebrospinal fluid:plasma glycine ratio. Cranial magnetic resonance imaging revealed leukodystrophy. Nonketotic hyperglycinemia was confirmed enzymatically. At age 7 years, she cannot walk, but has borderline normal intelligence. Leukodystrophy and a normal cerebrospinal fluid:plasma glycine ratio were not previously reported in late-onset nonketotic hyperglycinemia.


Brain Diseases, Metabolic/etiology , Hyperglycinemia, Nonketotic/complications , Hyperglycinemia, Nonketotic/epidemiology , Age of Onset , Brain Diseases, Metabolic/complications , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/physiopathology , Cerebral Palsy/etiology , Child, Preschool , Female , Gait , Glycine/blood , Glycine/cerebrospinal fluid , Humans , Magnetic Resonance Imaging
...