Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 26(5): 673-80, 2006 May.
Article in English | MEDLINE | ID: mdl-16452081

ABSTRACT

Potassium (K) and magnesium (Mg) are essential macro-nutrients, but little is known about how they are cycled within plants. Stable isotope studies have shown that the internal cycling of nitrogen (N) is independent of current nutrient supply in temperate tree species. This is ecologically significant because it allows trees to produce rapid shoot growth in spring independent of current soil N uptake. We used stable isotopes to quantify N, K and Mg in new shoots of Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings and to compare the relative contributions from current uptake and internal cycling. Two-year-old Sitka spruce seedlings were labeled with (15)N, (41)K and (26)Mg in an abundant or a limited supply for one growing season. The trees were repotted in the subsequent dormant season to prevent further root uptake of enriched isotopes and provided with an abundant or a limited supply of unlabeled nutrients until they were harvested in early summer of the following year. The supply was switched for half the trees in the second year to create four nutrient regimes. Enrichment of (15)N, (41)K and (26)Mg in current-year growth was attributed to internally cycled N, K and Mg uptake from the previous year. The internal cycling of N, K and Mg in new growth was significantly affected by the first-year nutrient treatments. The second-year nutrient supply affected the growth rates of the trees, but had no effect on the amounts of N, K or Mg contributed from internal cycling. Thus, internal cycling of K and Mg in Sitka spruce are, like that of N, independent of current nutrient supply.


Subject(s)
Magnesium/metabolism , Nitrogen/metabolism , Picea/metabolism , Potassium/metabolism , Isotopes/metabolism , Nitrogen Isotopes/metabolism , Picea/growth & development , Plant Roots/growth & development , Plant Roots/metabolism , Potassium Isotopes/metabolism , Radioactive Tracers , Time Factors
2.
J Exp Bot ; 52(358): 993-1002, 2001 May.
Article in English | MEDLINE | ID: mdl-11432916

ABSTRACT

The effect of N supply on plant growth and leaf demography of a deciduous and an evergreen Ericaceae was studied in relation to their internal cycling of N. Mature ramets of Vaccinium myrtillus (deciduous) and Vaccinium vitis-idaea (evergreen) were established in sand culture for 1 year with an adequate supply of a balanced nutrient solution. During one growing season, the plants were given two levels of N supply enriched with 15N and eight sequential destructive harvests were taken. Recovery of unlabelled N in the new shoot was used to determine the remobilization of N from storage. Initially, growth was unaffected by N supply. After May, High N enhanced growth for both species but the nature of their growth response differed. For both species, new shoot biomass and leaf number increased but root biomass production was affected for V. myrtillus only. Whole plant biomass production was similar for both species under High N, but was greater for V. vitis-idaea under Low N. The amount of N remobilized to support new shoot growth was similar for the two species and was independent of N current supply. N was remobilized predominantly from previous year leaves for V. vitis-idaea and from previous year stems and roots for V. myrtillus. The contribution of remobilization to new shoot N was similar for the two species, but depended on N supply. Remobilization was faster in V. myrtillus, but lasted longer in V. vitis-idaea. The results are discussed in relation to species growth in N-poor environments, focusing on the extent to which species-differences in the dynamic of N remobilization and growth may explain their adaptation to constant and/or changeable N supply.


Subject(s)
Magnoliopsida/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Magnoliopsida/growth & development , Species Specificity
3.
Tree Physiol ; 20(10): 653-661, 2000 May.
Article in English | MEDLINE | ID: mdl-12651515

ABSTRACT

Stem injection of (15)N-labeled ammonium sulfate was used to determine effects of pruning on canopy nitrogen dynamics in open-grown Pinus radiata D. Don in New Zealand. Trees were planted in July 1990 and the isotope introduced in December 1994. Tree crowns were divided into three zones: base section, from which branches of pruned trees were removed; mid section, between the pruned zone and the height of the trees at the start of the year in which they were pruned; and top section, which grew predominantly after the isotope was applied. Pruning removed 32% of the green crown length, representing 75% of foliage biomass. Needles were sampled from each region of the crown until July 1996. Branch growth was used to predict foliage biomass for each sampling occasion. Approximately 45% of the applied isotope was recovered from needles sampled in December 1994 (1 week after application and immediately before pruning), two-thirds of which occurred in needles in the base section. Thereafter, changes in isotope content of needles in the base section of unpruned trees largely reflected foliage biomass fluctuations and dilution of the isotope by continued uptake from the unlabeled soil nitrogen pool. Recovery of isotope in needles from the mid-crown section increased by 58 and 86% from December 1994 to July 1995 in control and pruned trees, respectively. Within this crown section, there was evidence of isotope translocation from old to new needles, with both isotope dilution and efflux observed in the needle cohorts that had been present at the time the isotope was applied. Therefore, isotope dynamics did not reflect the dynamics of the total nitrogen pool in the mid-crown section. By July 1996, a small proportion of the applied isotope was recovered from the new foliage formed in the top section of the crown. Within the top section, isotope dynamics closely matched total nitrogen fluxes. Pruning the lower crown did not affect nitrogen dynamics elsewhere in the crown for the following 18 months.

4.
Tree Physiol ; 18(7): 481-487, 1998 Jul.
Article in English | MEDLINE | ID: mdl-12651359

ABSTRACT

Cuttings of balsam spire hybrid poplar (Populus trichocarpa var. Hastata Henry x Populus balsamifera var. Michauxii (Dode) Farwell) were grown in sand culture and irrigated every 2 (W) or 10 (w) days with a solution containing either 3.0 (N) or 0.5 (n) mol nitrogen m(-3) for 90 days. Trees in the WN (control) and wn treatments had stable leaf nitrogen concentrations averaging 19.4 and 8.4 mg g(-1), respectively, over the course of the experiment. Trees in the Wn and wN treatments had a similar leaf nitrogen concentration, which increased from 12.0 to 15.8 mg g(-1) during the experiment. By the final harvest, mean stomatal conductances of trees in the wN and wn treatments were less than those of trees in the Wn and WN treatments (1.8 versus 4.6 mm s(-1)). Compared to the WN treatment, biomass at the final harvest was reduced by 61, 72 and 75% in the Wn, wN and wn treatments, respectively. At the final harvest, WN trees had a mean total leaf area of 4750 +/- 380 cm(2) tree(-1) and carried 164 +/- 8 leaves tree(-1) with a specific leaf area of 181 +/- 16 cm(2) g(-1), whereas Wn trees had a smaller mean total leaf area (1310 +/- 30 cm(2) tree(-1)), because of the production of fewer leaves (41 +/- 6) with a smaller specific leaf area (154 +/- 2 cm(2) g(-1)). A greater proportion of biomass was allocated to roots in Wn trees than in WN trees, but component nitrogen concentrations adjusted such that there was no Wn treatment effect on nitrogen allocation. Compared with WN trees, rates of photosynthesis and respiration per unit weight of tissue of Wn trees decreased by 28 and 31%, respectively, but the rate of photosynthesis per unit leaf nitrogen remained unaltered. The wN and Wn trees had similar leaf nitrogen concentrations; however, compared with the Wn treatment, the wN treatment decreased mean total leaf area (750 +/- 50 cm(2) tree(-1)), number of leaves per tree (29 +/- 2) and specific leaf area (140 +/- 6 cm(2) g(-1)), but increased the allocation of biomass and nitrogen to roots. Net photosynthetic rate per unit leaf nitrogen was 45% lower in the wN treatment than in the other treatments. Rates of net photosynthesis and respiration per unit weight of tissue were 48 and 33% less, respectively, in wN trees than in Wn trees.

5.
Tree Physiol ; 14(1): 75-88, 1994 Jan.
Article in English | MEDLINE | ID: mdl-14967635

ABSTRACT

Budget studies have shown that internal cycling may contribute a large proportion of the annual nutrient supply required to support new growth in trees. Use of budgets to quantify internal cycling only quantifies the net transfer of nutrients within the plant. Differential partitioning of remobilized nutrients and current nutrient uptake could lead to errors in the interpretation of results from these studies. We have quantified the dynamic relationships among tree growth, nutrient uptake and internal cycling by labeling the current uptake of N in trees that received contrasting amounts of nutrient. Two-year-old seedlings of Sitka spruce (Picea sitchensis (Bong.) Carr.) were grown in sand culture in a greenhouse for one year. The trees received nutrients in a balanced solution at either a high (high-RAR) or a low (low-RAR) relative addition rate throughout the experiment. Current N uptake was labeled with (15)N from April 13 to July 25. Thereafter, trees were re-potted in clean sand and unlabeled N applied until November 13. Overall growth was sustained for approximately 10 weeks before treatment effects were observed. Initially, no differences in the partition of growth or remobilized N occurred, although partition of current uptake favored the roots of plants in the low-RAR treatment. After 6 weeks, the partition of both growth and remobilized N altered in favor of roots of plants in the low-RAR treatment. Nutrient supply had no effect on the amount or rate of N remobilization. No evidence was found to suggest that N taken up in the current season and partitioned to preexisting shoots or roots is remobilized late in the season to support growth of new shoots. However, some trees in the high-RAR treatment exhibited a second flush of growth later in the season that was partially sustained by remobilization of (15)N from current shoots formed earlier in the season. Use of (15)N demonstrated differential partitioning of current uptake and remobilized N. The results highlight the limitations of simple budget studies for quantifying internal cycling.

6.
New Phytol ; 125(1): 113-119, 1993 Sep.
Article in English | MEDLINE | ID: mdl-33874615

ABSTRACT

Four-year-old seedlings of Picea sitchensis (Bong.) Carr. were grown in sand culture throughout 1989 and irrigated with nutrient solutions containing either 1.0 mol N m-3 (Low N) or 6.0 mol N m-3 (High N), to precondition their growth and capacity for N storage. During 1990 N enriched with 15 N was supplied, either from 15 March to 27 June, or 28 June to 20 November. Recovery of unlabelled N was used to determine the storage and immobilization of N for foliage growth, and the partitioning of labelled N taken up during the two periods was measured. Initial growth of trees in 1990 was unaffected by the current N supply and determined only by the N supplied the previous year. High N throughout increased the number of needles grown in 1990 compared to low N-treated trees, but had little effect on the dry weight of individual needles. When preconditioned with High N, trees responded to Low N in 1990 by a reduction in needle dry weight, without altering the number of needles produced. Low N trees supplied with High N in 1990 responded by increasing both needle numbers and dry weight, compared with trees supplied with Low N throughout. The amount of unlabelled N remobilized to foliage growth in 1990 was unaffected by the current N supply but reflected the amount of N in store, as determined by the N supply the previous year. The majority of N was remobilized from the 1989 foliage and none from roots. Partitioning of labelled N taken up during 1990 altered during the year, with a greater proportion of N taken up after 28 June recovered in the roots in all treatments, due to root growth as opposed to allocation of N to storage during the autumn, since root N concentrations fell between 17 June and the final harvest on 20 November.

7.
Tree Physiol ; 10(1): 33-43, 1992 Jan.
Article in English | MEDLINE | ID: mdl-14969873

ABSTRACT

Three-year-old clonal cuttings of Picea sitchensis (Bong.) Carr. were grown for two years (1988-1989) in sand irrigated with a nutrient solution containing either 1.0 mol N m(-3) (low N) or 6.0 mol N m(-3) (high N) NH(4)NO(3). In 1988, all the N provided was enriched with (15)N to 4.95 atom % (labeled N). In 1989, N was supplied with (15)N at natural abundance (unlabeled N). The recovery of unlabeled and labeled N in new foliage was used to quantify the internal cycling of N. In the high-N treatment, trees had two flushes of shoot growth and a period of rapid root growth, which coincided with the second flush of shoot growth in August. The timing of root growth and the first flush of shoot growth was similar in the low-N treatment, but there was no second flush of shoot growth and a greater proportion of biomass was recovered in roots. By November 1989, the root/needle dry matter ratio was 1.95 for the low-N trees and 1.36 for the high-N trees. Nitrogen was stored overwinter in roots and current-year needles. During the first six weeks of growth in the spring of 1989, stored N was remobilized for new foliage growth. Subsequent growth depended on root uptake of N. Remobilization of stored N was apparently not affected by the current N supply, because the amount of unlabeled N recovered in foliage produced in 1988 was the same for both N treatments. During 1989, the proportion of (15)N remobilized from roots relative to that from leaves produced in 1988 was greater in low-N trees than in high-N trees. In the autumn of both years, there was rapid uptake of N into roots and current-year needles. The effects of N supply on tree growth and nitrogen use efficiency are discussed in terms of the capacity for both N storage and internal cycling.

SELECTION OF CITATIONS
SEARCH DETAIL