Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(12): e0294498, 2023.
Article in English | MEDLINE | ID: mdl-38100464

ABSTRACT

BACKGROUND: Between 5-10% of patients discontinue statin therapy due to statin-associated adverse reactions, primarily statin associated muscle symptoms (SAMS). The absence of a clear clinical phenotype or of biomarkers poses a challenge for diagnosis and management of SAMS. Similarly, our incomplete understanding of the pathogenesis of SAMS hinders the identification of treatments for SAMS. Metabolomics, the profiling of metabolites in biofluids, cells and tissues is an important tool for biomarker discovery and provides important insight into the origins of symptomatology. In order to better understand the pathophysiology of this common disorder and to identify biomarkers, we undertook comprehensive metabolomic and lipidomic profiling of plasma samples from patients with SAMS who were undergoing statin rechallenge as part of their clinical care. METHODS AND FINDINGS: We report our findings in 67 patients, 28 with SAMS (cases) and 39 statin-tolerant controls. SAMS patients were studied during statin rechallenge and statin tolerant controls were studied while on statin. Plasma samples were analyzed using untargeted LC-MS metabolomics and lipidomics to detect differences between cases and controls. Differences in lipid species in plasma were observed between cases and controls. These included higher levels of linoleic acid containing phospholipids and lower ether lipids and sphingolipids. Reduced levels of acylcarnitines and altered amino acid profile (tryptophan, tyrosine, proline, arginine, and taurine) were observed in cases relative to controls. Pathway analysis identified significant increase of urea cycle metabolites and arginine and proline metabolites among cases along with downregulation of pathways mediating oxidation of branched chain fatty acids, carnitine synthesis, and transfer of acetyl groups into mitochondria. CONCLUSIONS: The plasma metabolome of patients with SAMS exhibited reduced content of long chain fatty acids and increased levels of linoleic acid (18:2) in phospholipids, altered energy production pathways (ß-oxidation, citric acid cycle and urea cycles) as well as reduced levels of carnitine, an essential mediator of mitochondrial energy production. Our findings support the hypothesis that alterations in pro-inflammatory lipids (arachidonic acid pathway) and impaired mitochondrial energy metabolism underlie the muscle symptoms of patients with statin associated muscle symptoms (SAMS).


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Prostaglandins , Muscles/metabolism , Carnitine , Fatty Acids/metabolism , Metabolomics/methods , Proline , Arginine , Biomarkers , Linoleic Acids , Urea
2.
Mol Neurobiol ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946007

ABSTRACT

Ischemic stroke is one of the major causes of morbidity and mortality worldwide. Mitochondria play a vital role in the pathological processes of cerebral ischemic injury, but its transplantation and underlying mechanisms remain unclear. In the present study, we examined the effects of mitochondrial therapy on the modulation of AMPK and SIRT1/PGC-1α signaling pathway, oxidative stress, and NLRP3 inflammasome activation after photothrombotic ischemic stroke (pt-MCAO). The adult male mice were subjected to the pt-MCAO in which the proximal-middle cerebral artery was exposed with a 532-nm laser beam for 4 min by retro-orbital injection of a photosensitive dye (Rose Bengal: 15 mg/kg) before the laser light exposure and isolated mitochondria (100 µg protein) were administered intranasally at 30 min, 24 h, and 48 h following post-stroke. After 72 h, mice were tested for neurobehavioral outcomes and euthanized for infarct volume, brain edema, and molecular analysis. First, we found that mitochondria therapy significantly decreased brain infarct volume and brain edema, improved neurological dysfunction, attenuated ischemic stroke-induced oxidative stress, and neuroinflammation. Second, mitochondria treatment inhibited NLRP3 inflammasome activation. Finally, mitochondria therapy accelerated p-AMPKα(Thr172) and PGC-1α expression and resorted SIRT1 protein expression levels in pt-MCAO mice. In conclusion, our results demonstrate that mitochondria therapy exerts neuroprotective effects by inhibiting oxidative damage and inflammation, mainly dependent on the heightening activation of the AMPK and SIRT1/PGC-1α signaling pathway. Thus, intranasal delivery of mitochondria might be considered a new therapeutic strategy for ischemic stroke treatment.

3.
Adv Exp Med Biol ; 1438: 33-36, 2023.
Article in English | MEDLINE | ID: mdl-37845436

ABSTRACT

Hypoxia-inducible factor 1 (HIF-1) is a major player in the oxygen sensor system as well as a transcription factor. HIF-1 is also associated in the pathogenesis of many brain diseases including Alzheimer's disease (AD), epilepsy and stroke. HIF-1 regulates the expression of many genes such as those involved in glycolysis, erythropoiesis, angiogenesis and proliferation in hypoxic condition. Despite several studies, the mechanism through which HIF-1 confers neuroprotection remains unclear, one of them is modulating metabolic profiles and inflammatory pathways. Characterization of the neuroprotective role of HIF-1 may be through its stabilization and the regulation of target genes that aid in the early adaptation to the oxidative stressors. It is interesting to note that mounting data from recent years point to an additional crucial regulatory role for hypoxia-inducible factors (HIFs) in inflammation. HIFs in immune cells regulate the production of glycolytic energy as well as innate immunity, pro-inflammatory gene expression, and mediates activation of pro-survival pathways. The present review highlights the contribution of HIF-1 to neuroprotection where inflammation is the crucial factor in the pathogenesis contributing to neural death. The potential mechanisms that contribute to neuroprotection as a result of the downstream targets of HIF-1α are discussed. Such mechanisms include those mediated through IL-10, an anti-inflammatory molecule involved in activating pro-survival signaling mechanisms via AKT/ERK and JAK/STAT pathways.


Subject(s)
Gene Expression Regulation , Neuroprotection , Humans , Signal Transduction , Inflammation/genetics , Phenotype , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
4.
Elife ; 122023 09 06.
Article in English | MEDLINE | ID: mdl-37672386

ABSTRACT

While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here, we report that the deletion of Ptpmt1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection - the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. Ptpmt1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, Ptpmt1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that Ptpmt1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.


Cells are powered by mitochondria, a group of organelles that produce chemical energy in the form of molecules called ATP. This energy is derived from the breakdown of carbohydrates, fats, and proteins. The number of mitochondria in a cell and the energy source they use to produce ATP varies depending on the type of cell. Mitochondria can also switch the molecules they use to produce energy when the cell is responding to stress or disease. The heart and the skeletal muscles ­ which allow movement ­ are two tissues that require large amounts of energy, but it remained unknown whether disrupting mitochondrial fuel selection affects how these tissues work. To answer these questions, Zheng, Li, Li et al. investigated the role of an enzyme found in mitochondria called Ptpmt1. Genetically deleting Ptpmt1 in the heart and skeletal muscle of mice showed that while the development of these organs was not affected, mitochondria in these cells switched from using carbohydrates to using fats as an energy source. Over time, this shift damaged both the mitochondria and the tissues, leading to muscle wasting, heart failure, and sudden death in the mice. This suggests that balanced use of carbohydrates and fats is essential for the muscles and heart. These findings imply that long-term use of medications that alter the fuel that mitochondria use may be detrimental to patients' health and could cause heart dysfunction. This may be important for future drug development, as well as informing decisions about medication taken in the clinic.


Subject(s)
Heart Failure , Animals , Mice , Fatty Acids , Glucose , Heart Failure/genetics , Mice, Knockout , Mitochondria , Muscular Atrophy
5.
Metabolism ; 144: 155589, 2023 07.
Article in English | MEDLINE | ID: mdl-37182789

ABSTRACT

BACKGROUND: Evidence is accumulating that growth hormone (GH) protects against the development of steatosis and progression of non-alcoholic fatty liver disease (NAFLD). GH may control steatosis indirectly by altering systemic insulin sensitivity and substrate delivery to the liver and/or by the direct actions of GH on hepatocyte function. APPROACH: To better define the hepatocyte-specific role of GH receptor (GHR) signaling on regulating steatosis, we used a mouse model with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd). To prevent the reduction in circulating insulin-like growth factor 1 (IGF1) and the subsequent increase in GH observed after aHepGHRkd, subsets of aHepGHRkd mice were treated with adeno-associated viral vectors (AAV) driving hepatocyte-specific expression of IGF1 or a constitutively active form of STAT5b (STAT5bCA). The impact of hepatocyte-specific modulation of GHR, IGF1 and STAT5b on carbohydrate and lipid metabolism was studied across multiple nutritional states and in the context of hyperinsulinemic:euglycemic clamps. RESULTS: Chow-fed male aHepGHRkd mice developed steatosis associated with an increase in hepatic glucokinase (GCK) and ketohexokinase (KHK) expression and de novo lipogenesis (DNL) rate, in the post-absorptive state and in response to refeeding after an overnight fast. The aHepGHRkd-associated increase in hepatic KHK, but not GCK and steatosis, was dependent on hepatocyte expression of carbohydrate response element binding protein (ChREBP), in re-fed mice. Interestingly, under clamp conditions, aHepGHRkd also increased the rate of DNL and expression of GCK and KHK, but impaired insulin-mediated suppression of hepatic glucose production, without altering plasma NEFA levels. These effects were normalized with AAV-mediated hepatocyte expression of IGF1 or STAT5bCA. Comparison of the impact of AAV-mediated hepatocyte IGF1 versus STAT5bCA in aHepGHRkd mice across multiple nutritional states, indicated the restorative actions of IGF1 are indirect, by improving systemic insulin sensitivity, independent of changes in the liver transcriptome. In contrast, the actions of STAT5b are due to the combined effects of raising IGF1 and direct alterations in the hepatocyte gene program that may involve suppression of BCL6 and FOXO1 activity. However, the direct and IGF1-dependent actions of STAT5b cannot fully account for enhanced GCK activity and lipogenic gene expression observed after aHepGHRkd, suggesting other GHR-mediated signals are involved. CONCLUSION: These studies demonstrate hepatocyte GHR-signaling controls hepatic glycolysis, DNL, steatosis and hepatic insulin sensitivity indirectly (via IGF1) and directly (via STAT5b). The relative contribution of these indirect and direct actions of GH on hepatocytes is modified by insulin and nutrient availability. These results improve our understanding of the physiologic actions of GH on regulating adult metabolism to protect against NAFLD progression.


Subject(s)
Human Growth Hormone , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Lipogenesis/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Insulin Resistance/physiology , Liver/metabolism , Growth Hormone/metabolism , Insulin/metabolism , Glycolysis , Glucose/metabolism , Human Growth Hormone/metabolism
6.
Mol Metab ; 73: 101723, 2023 07.
Article in English | MEDLINE | ID: mdl-37100238

ABSTRACT

OBJECTIVES: Insulin's ability to counterbalance catecholamine-induced lipolysis defines insulin action in adipose tissue. Insulin suppresses lipolysis directly at the level of the adipocyte and indirectly through signaling in the brain. Here, we further characterized the role of brain insulin signaling in regulating lipolysis and defined the intracellular insulin signaling pathway required for brain insulin to suppress lipolysis. METHODS: We used hyperinsulinemic clamp studies coupled with tracer dilution techniques to assess insulin's ability to suppress lipolysis in two different mouse models with inducible insulin receptor depletion in all tissues (IRΔWB) or restricted to peripheral tissues excluding the brain (IRΔPER). To identify the underlying signaling pathway required for brain insulin to inhibit lipolysis, we continuously infused insulin +/- a PI3K or MAPK inhibitor into the mediobasal hypothalamus of male Sprague Dawley rats and assessed lipolysis during clamps. RESULTS: Genetic insulin receptor deletion induced marked hyperglycemia and insulin resistance in both IRΔPER and IRΔWB mice. However, the ability of insulin to suppress lipolysis was largely preserved in IRΔPER, but completely obliterated in IRΔWB mice indicating that insulin is still able to suppress lipolysis as long as brain insulin receptors are present. Blocking the MAPK, but not the PI3K pathway impaired the inhibition of lipolysis by brain insulin signaling. CONCLUSION: Brain insulin is required for insulin to suppress adipose tissue lipolysis and depends on intact hypothalamic MAPK signaling.


Subject(s)
Insulin , Lipolysis , Rats , Male , Mice , Animals , Insulin/metabolism , Receptor, Insulin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Signal Transduction , Brain/metabolism , Insulin, Regular, Human/metabolism
7.
Adv Exp Med Biol ; 1395: 75-79, 2022.
Article in English | MEDLINE | ID: mdl-36527617

ABSTRACT

Hypoxia inducible factor alpha (HIF1α) is associated with neuroprotection conferred by diet-induced ketosis but the underlying mechanism remains unclear. In this study we use a ketogenic diet in rodents to induce a metabolic state of chronic ketosis, as measured by elevated blood ketone bodies. Chronic ketosis correlates with neuroprotection in both aged and following focal cerebral ischaemia and reperfusion (via middle cerebral artery occlusion, MCAO) in mouse and rat models. Ketone bodies are known to be used efficiently by the brain and metabolism of ketone bodies is associated with increased cytosolic succinate levels that inhibits prolyl hydroxylases allowing HIF1α to accumulate. Ketosis also regulates inflammatory pathways, and HIF1α is reported to be essential for gene expression of interleukin10 (IL10). Therefore we hypothesised that ketosis-stabilised HIF1α modulates the expression of inflammatory cytokines orchestrating neuroprotection. To test changes in cytokine levels in rodent brain, eight-week-old rats were fed either the standard chow diet (SD) or the ketogenic (KG) diet for 4 weeks before ischaemia experiments (MCAO) were performed and the brain tissues were collected. Consistent with our hypothesis, immunoblotting analysis shows IL10 levels were significantly higher in KG diet rat brain compared to SD, whereas the TNFα and IL6 levels were significantly lower in the brains of KG diet fed group.


Subject(s)
Diet, Ketogenic , Ketosis , Animals , Rats , Mice , Interleukin-10/genetics , Interleukin-10/metabolism , Ketosis/metabolism , Ketone Bodies/metabolism , Brain/metabolism
8.
Nat Commun ; 13(1): 6062, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229459

ABSTRACT

Almost all effective treatments for non-alcoholic fatty liver disease (NAFLD) involve reduction of adiposity, which suggests the metabolic axis between liver and adipose tissue is essential to NAFLD development. Since excessive dietary sugar intake may be an initiating factor for NAFLD, we have characterized the metabolic effects of liquid sucrose intake at concentrations relevant to typical human consumption in mice. We report that sucrose intake induces sexually dimorphic effects in liver, adipose tissue, and the microbiome; differences concordant with steatosis severity. We show that when steatosis is decoupled from impairments in insulin responsiveness, sex is a moderating factor that influences sucrose-driven lipid storage and the contribution of de novo fatty acid synthesis to the overall hepatic triglyceride pool. Our findings provide physiologic insight into how sex influences the regulation of adipose-liver crosstalk and highlight the importance of extrahepatic metabolism in the pathogenesis of diet-induced steatosis and NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adipose Tissue/metabolism , Animals , Dietary Sucrose/adverse effects , Fatty Acids/metabolism , Humans , Insulin/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
9.
Cardiovasc Res ; 118(16): 3198-3210, 2022 12 29.
Article in English | MEDLINE | ID: mdl-35388887

ABSTRACT

AIMS: Cardiomyopathy and arrhythmias can be severe presentations in patients with inherited defects of mitochondrial long-chain fatty acid ß-oxidation (FAO). The pathophysiological mechanisms that underlie these cardiac abnormalities remain largely unknown. We investigated the molecular adaptations to a FAO deficiency in the heart using the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse model. METHODS AND RESULTS: We observed enrichment of amino acid metabolic pathways and of ATF4 target genes among the upregulated genes in the LCAD KO heart transcriptome. We also found a prominent activation of the eIF2α/ATF4 axis at the protein level that was independent of the feeding status, in addition to a reduction of cardiac protein synthesis during a short period of food withdrawal. These findings are consistent with an activation of the integrated stress response (ISR) in the LCAD KO mouse heart. Notably, charging of several transfer RNAs (tRNAs), such as tRNAGln was decreased in LCAD KO hearts, reflecting a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the ISR in the hearts of mice with muscle-specific deletion of carnitine palmitoyltransferase 2. CONCLUSIONS: Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signalling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid ß-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signalling pathways such as the integrated stress response.


Subject(s)
Fatty Acids , Mitochondria , Mice , Animals , Mitochondria/metabolism , Fatty Acids/metabolism , Oxidation-Reduction , Mice, Knockout , Amino Acids/metabolism , RNA, Transfer/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Acyl-CoA Dehydrogenase, Long-Chain/metabolism
10.
J Stroke Cerebrovasc Dis ; 31(2): 106226, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34847489

ABSTRACT

OBJECTIVES: Acute hyperglycemia (HG) exacerbates reperfusion injury after stroke. Our recent studies showed that acute HG upregulates thioredoxin-interacting protein (TXNIP) expression, which in turn induces inflammation and neurovascular damage in a suture model of ischemic stroke. The aim of the present study was to investigate the effect of acute HG on TXNIP-associated neurovascular damage, in a more clinically relevant murine model of embolic stroke and intravenous tissue plasminogen activator (IV-tPA) reperfusion. MATERIALS AND METHODS: HG was induced in adult male mice, by intraperitoneal injection of 20% glucose. This was followed by embolic middle cerebral artery occlusion (eMCAO), with or without IV-tPA (10 mg/kg) given 3 h post embolization. Brain infarction, edema, hemoglobin content, expression of matrix metalloproteinase (MMP-9), vascular endothelial growth factor A (VEGFA), tight junction proteins (claudin-5, occluding, and zonula occludens-1), TXNIP, and NOD-like receptor protein3 (NLRP3)-inflammasome activation were evaluated at 24 h after eMCAO. RESULTS: HG alone significantly increased TXNIP in the brain after eMCAO, and this was associated with exacerbated hemorrhagic transformation (HT; as measured by hemoglobin content). IV-tPA in HG conditions showed a trend to decrease infarct volume, but worsened HT after eMCAO, suggesting that HG reduces the therapeutic efficacy of IV-tPA. Further, HG and tPA-reperfusion did not show significant differences in expression of MMP-9, VEGFA, junction proteins, and NLRP3 inflammasome activation between the groups. CONCLUSION: The current findings suggest a potential role for TXNIP in the occurrence of HT in hyperglycemic conditions following eMCAO. Further studies are needed to understand the precise role of vascular TXNIP on HG/tPA-induced neurovascular damage after stroke.


Subject(s)
Embolic Stroke , Hyperglycemia , Reperfusion , Tissue Plasminogen Activator , Animals , Carrier Proteins/physiology , Disease Models, Animal , Embolic Stroke/drug therapy , Embolic Stroke/pathology , Hyperglycemia/complications , Inflammasomes/physiology , Injections, Intravenous , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Thioredoxins/physiology , Tissue Plasminogen Activator/administration & dosage
11.
Int J Mol Sci ; 22(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34948286

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in various industrial and household plastic products, ensuring widespread human exposures. Its routine detection in human bio-fluids and the propensity of its monoester metabolite to activate peroxisome proliferator activated receptor-α (PPARα) and perturb lipid metabolism implicate it as a metabolic disrupter. In this study we evaluated the effects of DEHP exposure on hepatic levels of free CoA and various CoA esters, while also confirming the metabolic activation to CoA esters and partial ß-oxidation of a DEHP metabolite (2-ethyhexanol). Male Wistar rats were exposed via diet to 2% (w/w) DEHP for fourteen-days, following which hepatic levels of free CoA and various CoA esters were identified using liquid chromatography-mass spectrometry. DEHP exposed rats showed significantly elevated free CoA and increased levels of physiological, DEHP-derived and unidentified CoA esters. The physiological CoA ester of malonyl-CoA and DEHP-derived CoA ester of 3-keto-2-ethylhexanoyl-CoA were the most highly elevated, at eighteen- and ninety eight-times respectively. We also detected sixteen unidentified CoA esters which may be derivative of DEHP metabolism or induction of other intermediary metabolism metabolites. Our results demonstrate that DEHP is a metabolic disrupter which affects production and sequestration of CoA, an essential cofactor of oxidative and biosynthetic reactions.


Subject(s)
Coenzyme A/metabolism , Diethylhexyl Phthalate/metabolism , Liver/metabolism , Phthalic Acids/metabolism , Animals , Lipid Metabolism/physiology , Male , Oxidation-Reduction , PPAR alpha/metabolism , Plasticizers/metabolism , Rats , Rats, Wistar
12.
FASEB J ; 35(12): e22018, 2021 12.
Article in English | MEDLINE | ID: mdl-34731499

ABSTRACT

Adipose tissue is the primary site of energy storage, playing important roles in health. While adipose research largely focuses on obesity, fat also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety and total energy homeostasis. SMAD2/3 proteins are downstream mediators of activin signaling, which regulate critical preadipocyte and mature adipocyte functions. Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity. The direct contributions of Smad2 and Smad3 in adipose tissues, however, are unknown. Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 on diet-induced adiposity using Smad2 or Smad3 "floxed" mice intercrossed with Adiponectin-Cre mice. Additionally, we examined visceral and subcutaneous preadipocyte differentiation efficiency in vitro. Almost all wild type subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A suppressed differentiation of preadipocytes from both depots. Smad2 conditional knockout (Smad2cKO) mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3 conditional knockout (Smad3cKO) male mice displayed a trend of reduced body weight on high-fat diet. On both diets, Smad3cKO mice displayed an adipose depot-selective phenotype, with a significant reduction in subcutaneous fat mass but not visceral fat mass. Our data suggest that Smad3 is an important contributor to the maintenance of subcutaneous white adipose tissue in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation.


Subject(s)
Adipogenesis , Adipose Tissue, White/cytology , Adiposity , Intra-Abdominal Fat/cytology , Smad2 Protein/physiology , Smad3 Protein/physiology , Subcutaneous Fat/cytology , Activins/genetics , Activins/metabolism , Adipose Tissue, White/metabolism , Animals , Cell Differentiation , Diet, High-Fat , Female , Intra-Abdominal Fat/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Subcutaneous Fat/metabolism
13.
Redox Biol ; 47: 102163, 2021 11.
Article in English | MEDLINE | ID: mdl-34655995

ABSTRACT

12/15-lipoxygenase (12/15-LOX) plays an essential role in oxidative conversion of polyunsaturated fatty acids into various bioactive lipid molecules. Although 12/15-LOX's role in the pathophysiology of various human diseases has been well studied, its role in weight gain is controversial and poorly clarified. Here, we demonstrated the role of 12/15-LOX in high-fat diet (HFD)-induced weight gain in a mouse model. We found that 12/15-LOX mediates HFD-induced de novo lipogenesis (DNL), triglyceride (TG) biosynthesis and the transport of TGs from the liver to adipose tissue leading to white adipose tissue (WAT) expansion and weight gain via xanthine oxidase (XO)-dependent production of H2O2. 12/15-LOX deficiency leads to cullin2-mediated ubiquitination and degradation of XO, thereby suppressing H2O2 production, DNL and TG biosynthesis resulting in reduced WAT expansion and weight gain. These findings infer that manipulation of 12/15-LOX metabolism may manifest a potential therapeutic target for weight gain and obesity.


Subject(s)
Lipogenesis , Xanthine Oxidase , Animals , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Diet, High-Fat/adverse effects , Hydrogen Peroxide/metabolism , Liver/metabolism , Mice , Triglycerides/metabolism , Weight Gain , Xanthine Oxidase/metabolism
14.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681207

ABSTRACT

We hypothesize that endothelial-specific thioredoxin-interacting protein knock-out (EC-TXNIP KO) mice will be more resistant to the neurovascular damage (hemorrhagic-transformation-HT) associated with hyperglycemia (HG) in embolic stroke. Adult-male EC-TXNIP KO and wild-type (WT) littermate mice were injected with-streptozotocin (40 mg/kg, i.p.) for five consecutive days to induce diabetes. Four-weeks after confirming HG, mice were subjected to embolic middle cerebral artery occlusion (eMCAO) followed by tissue plasminogen activator (tPA)-reperfusion (10 mg/kg at 3 h post-eMCAO). After the neurological assessment, animals were sacrificed at 24 h for neurovascular stroke outcomes. There were no differences in cerebrovascular anatomy between the strains. Infarct size, edema, and HT as indicated by hemoglobin (Hb)-the content was significantly higher in HG-WT mice, with or without tPA-reperfusion, compared to normoglycemic WT mice. Hyperglycemic EC-TXNIP KO mice treated with tPA tended to show lower Hb-content, edema, infarct area, and less hemorrhagic score compared to WT hyperglycemic mice. EC-TXNIP KO mice showed decreased expression of inflammatory mediators, apoptosis-associated proteins, and nitrotyrosine levels. Further, vascular endothelial growth factor-A and matrix-metalloproteinases (MMP-9/MMP-3), which degrade junction proteins and increase blood-brain-barrier permeability, were decreased in EC-TXNIP KO mice. Together, these findings suggest that vascular-TXNIP could be a novel therapeutic target for neurovascular damage after stroke.

15.
J Inherit Metab Dis ; 44(6): 1419-1433, 2021 11.
Article in English | MEDLINE | ID: mdl-34564857

ABSTRACT

Peroxisomes metabolize a specific subset of fatty acids, which include dicarboxylic fatty acids (DCAs) generated by ω-oxidation. Data obtained in vitro suggest that the peroxisomal transporter ABCD3 (also known as PMP70) mediates the transport of DCAs into the peroxisome, but in vivo evidence to support this role is lacking. In this work, we studied an Abcd3 KO mouse model generated by CRISPR-Cas9 technology using targeted and untargeted metabolomics, histology, immunoblotting, and stable isotope tracing technology. We show that ABCD3 functions in hepatic DCA metabolism and uncover a novel role for this peroxisomal transporter in lipid homeostasis. The Abcd3 KO mouse presents with increased hepatic long-chain DCAs, increased urine medium-chain DCAs, lipodystrophy, enhanced hepatic cholesterol synthesis and decreased hepatic de novo lipogenesis. Moreover, our study suggests that DCAs are metabolized by mitochondrial fatty acid ß-oxidation when ABCD3 is not functional, reflecting the importance of the metabolic compartmentalization and communication between peroxisomes and mitochondria. In summary, this study provides data on the role of the peroxisomal transporter ABCD3 in hepatic lipid homeostasis and DCA metabolism, and the consequences of peroxisomal dysfunction for the liver.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Dicarboxylic Acids/metabolism , Fatty Acids/metabolism , Homeostasis , Lipid Metabolism , ATP-Binding Cassette Transporters/genetics , Animals , Female , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction , Peroxisomes/metabolism
16.
Cell Mol Life Sci ; 78(14): 5631-5646, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34110423

ABSTRACT

Peroxisomes play an essential role in the ß-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA ß-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA ß-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L-bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA ß-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA ß-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA ß-oxidation is a regulator of hepatic cholesterol biosynthesis.


Subject(s)
Cholesterol/metabolism , Dicarboxylic Acids/urine , Lipid Metabolism, Inborn Errors/pathology , Liver Diseases/pathology , Mitochondria/pathology , Peroxisomal Bifunctional Enzyme/physiology , Animals , Female , HEK293 Cells , Homeostasis , Humans , Lipid Metabolism, Inborn Errors/etiology , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism
17.
Adv Exp Med Biol ; 1269: 3-7, 2021.
Article in English | MEDLINE | ID: mdl-33966187

ABSTRACT

Hypoxia inducible factor alpha (HIF1α) is associated with neuroprotection conferred by diet-induced ketosis, but the underlying mechanism remains unclear. In this study, we use a ketogenic diet in rodents to induce a metabolic state of chronic ketosis, as measured by elevated blood ketone bodies. Chronic ketosis correlates with neuroprotection in both aged and following focal cerebral ischemia and reperfusion (via middle cerebral artery occlusion, MCAO) in mouse and rat models. Ketone bodies are known to be used efficiently by the brain, and metabolism of ketone bodies is associated with increased cytosolic succinate levels that inhibits prolyl hydroxylases allowing HIF1α to accumulate. Ketosis also regulates inflammatory pathways, and HIF1α is reported to be essential for gene expression of interleukin 10 (IL10). Therefore, we hypothesized that ketosis-stabilized HIF1α modulates the expression of inflammatory cytokines orchestrating neuroprotection. To test changes in cytokine levels in rodent brain, 8-week-rats were fed either the standard chow diet (SD) or the KG diet for 4 weeks before ischemia experiments (MCAO) were performed and the brain tissues were collected. Consistent with our hypothesis, immunoblotting analysis shows IL10 levels were significantly higher in KG diet rat brain compared to SD, whereas the TNFα and IL6 levels were significantly lower in the brains of KG diet-fed group.


Subject(s)
Brain Ischemia , Diet, Ketogenic , Ketosis , Animals , Brain , Ketone Bodies , Mice , Rats
18.
Cancer Discov ; 11(8): 2072-2093, 2021 08.
Article in English | MEDLINE | ID: mdl-33757970

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic transdifferentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition and impairment of tumor cell growth in vitro and in vivo. A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate hypoxia-inducible factor 2α expression. The lipid coenzyme Q and mitochondrial complex IV, whose biogeneses are lipid-dependent, were found to be decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology. SIGNIFICANCE: Identification of a hypoxia-inducible factor-dependent adipokine that prevents fatty acid oxidation and causes escape from ferroptosis highlights a critical metabolic dependency unique in the clear cell subtype of kidney cancer. Targeting lipid metabolism via inhibition of a soluble factor is a promising pharmacologic approach to expand therapeutic strategies for patients with ccRCC.See related commentary by Reznik et al., p. 1879.This article is highlighted in the In This Issue feature, p. 1861.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Obesity/complications , Animals , Carcinoma, Renal Cell/complications , Cell Line, Tumor/drug effects , Fatty Acids/metabolism , Female , Ferroptosis/drug effects , Humans , Kidney Neoplasms/complications , Lipid Metabolism/drug effects , Mice , Mice, Nude
19.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G322-G335, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31905022

ABSTRACT

Bile acid receptors regulate the metabolic and immune functions of circulating enterohepatic bile acids. This process is disrupted by administration of parenteral nutrition (PN), which may induce progressive hepatic injury for unclear reasons, especially in the newborn, leading to PN-associated liver disease. To explore the role of bile acid signaling on neonatal hepatic function, we initially observed that Takeda G protein receptor 5 (TGR5)-specific bile acids were negatively correlated with worsening clinical disease markers in the plasma of human newborns with prolonged PN exposure. To test our resulting hypothesis that TGR5 regulates critical liver functions to PN exposure, we used TGR5 receptor deficient mice (TGR5-/-). We observed PN significantly increased liver weight, cholestasis, and serum hepatic stress enzymes in TGR5-/- mice compared with controls. Mechanistically, PN reduced bile acid synthesis genes in TGR5-/-. Serum bile acid composition revealed that PN increased unconjugated primary bile acids and secondary bile acids in TGR5-/- mice, while increasing conjugated primary bile acid levels in TGR5-competent mice. Simultaneously, PN elevated hepatic IL-6 expression and infiltrating macrophages in TGR5-/- mice. However, the gut microbiota of TGR5-/- mice compared with WT mice following PN administration displayed highly elevated levels of Bacteroides and Parabacteroides, and possibly responsible for the elevated levels of secondary bile acids in TGR5-/- animals. Intestinal bile acid transporters expression was unchanged. Collectively, this suggests TGR5 signaling specifically regulates fundamental aspects of liver bile acid homeostasis during exposure to PN. Loss of TGR5 is associated with biochemical evidence of cholestasis in both humans and mice on PN.NEW & NOTEWORTHY Parenteral nutrition is associated with deleterious metabolic outcomes in patients with prolonged exposure. Here, we demonstrate that accelerated cholestasis and parental nutrition-associated liver disease (PNALD) may be associated with deficiency of Takeda G protein receptor 5 (TGR5) signaling. The microbiome is responsible for production of secondary bile acids that signal through TGR5. Therefore, collectively, these data support the hypothesis that a lack of established microbiome in early life or under prolonged parenteral nutrition may underpin disease development and PNALD.


Subject(s)
Liver Diseases/etiology , Liver Diseases/physiopathology , Parenteral Nutrition/adverse effects , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Animals , Bile Acids and Salts/metabolism , Cholestasis , Female , Gastrointestinal Microbiome , Gene Expression Regulation/physiology , Humans , Infant, Newborn , Interleukin-6/metabolism , Liver Function Tests , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Size , Signal Transduction/genetics
20.
J Cereb Blood Flow Metab ; 40(3): 678-691, 2020 03.
Article in English | MEDLINE | ID: mdl-30890077

ABSTRACT

Triheptanoin is anticonvulsant in several seizure models. Here, we investigated changes in glucose metabolism by triheptanoin interictally in the chronic stage of the pilocarpine mouse epilepsy model. After injection of [U-13C6]-glucose (i.p.), enrichments of 13C in intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were quantified in hippocampal extracts and maximal activities of enzymes in each pathway were measured. The enrichment of 13C glucose in plasma was similar across all groups. Despite this, we observed reductions in incorporation of 13C in several glycolytic intermediates compared to control mice suggesting glucose utilization may be impaired and/or glycogenolysis increased in the untreated interictal hippocampus. Triheptanoin prevented the interictal reductions of 13C incorporation in most glycolytic intermediates, suggesting it increased glucose utilization or - as an additional astrocytic fuel - it decreased glycogen breakdown. In the TCA cycle metabolites, the incorporation of 13C was reduced in the interictal state. Triheptanoin restored the correlation between 13C enrichments of pyruvate relative to most of the TCA cycle intermediates in "epileptic" mice. Triheptanoin also prevented the reductions of hippocampal pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities. Decreased glycogen breakdown and increased glucose utilization and metabolism via the TCA cycle in epileptogenic brain areas may contribute to triheptanoin's anticonvulsant effects.


Subject(s)
Citric Acid Cycle/drug effects , Epilepsy/metabolism , Glucose , Glycolysis/drug effects , Hippocampus/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Pyruvate Decarboxylase/metabolism , Triglycerides/pharmacology , Animals , Chronic Disease , Disease Models, Animal , Epilepsy/pathology , Glucose/analogs & derivatives , Glucose/pharmacokinetics , Glucose/pharmacology , Hippocampus/pathology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...