Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 779, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942984

ABSTRACT

The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate 'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.


Subject(s)
Bacterial Vaccines , Mycoplasma , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Mycoplasma/genetics , Mycoplasma/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Immunoglobulins/genetics , Immunoglobulins/metabolism , Immunoglobulins/immunology , Gene Expression Regulation, Bacterial , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Mycoplasma Infections/immunology , Mycoplasma Infections/prevention & control , Goats
2.
iScience ; 27(6): 109868, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38779483

ABSTRACT

Iron serves as a cofactor for enzymes involved in several steps of protein translation, but the control of translation during iron limitation is not understood at the molecular level. Here, we report a genome-wide analysis of protein translation in response to iron deficiency in yeast using ribosome profiling. We show that iron depletion affects global protein synthesis and leads to translational repression of multiple genes involved in iron-related processes. Furthermore, we demonstrate that the RNA-binding proteins Cth1 and Cth2 play a central role in this translational regulation by repressing the activity of the iron-dependent Rli1 ribosome recycling factor and inhibiting mitochondrial translation and heme biosynthesis. Additionally, we found that iron deficiency represses MRS3 mRNA translation through increased expression of antisense long non-coding RNA. Together, our results reveal complex gene expression and protein synthesis remodeling in response to low iron, demonstrating how this important metal affects protein translation at multiple levels.

3.
Sci Rep ; 14(1): 8451, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605136

ABSTRACT

Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.


Subject(s)
Iron Deficiencies , Iron , Animals , Humans , Iron/metabolism , Phosphorylation , Protein Biosynthesis , Saccharomyces cerevisiae/metabolism , Eukaryotic Initiation Factor-2/metabolism , Mammals/metabolism
5.
Microbiol Spectr ; 12(2): e0292423, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38206027

ABSTRACT

Animal shelters, especially in resource-poor countries, bring together pets from different regions and with different backgrounds. The crowding of such animals often results in infectious diseases, such as respiratory infections. This study characterized Staphylococcaceae from diseased and apparently healthy dogs housed in an animal shelter in Kenya, to determine their antibiotic resistance profiles, their genetic relatedness, and the presence of dominant clones. Therefore, bacteria were collected from all 167 dogs present in the shelter in June 2015 and screened for Staphylococcaceae using standard cultivation techniques. In all, 92 strains were isolated from 85 dogs and subsequently sequenced by PacBio long-read sequencing. Strains encompassed nine validated species, while S. aureus (n = 47), S. pseudintermedius (n = 21), and Mammaliicoccus (M.) sciuri (n = 16) were the three most dominant species. Two S. aureus clones of ST15 (CC15) and ST1292 (CC1) were isolated from 7 and 37 dogs, respectively. All 92 strains isolated were tested for their antimicrobial susceptibility by determining the minimum inhibitory concentrations. In all, 86 strains had resistance-associated minimal inhibitory concentrations to at least one of the following antimicrobials: tetracycline, benzylpenicillin, oxacillin, erythromycin, clindamycin, trimethoprim, kanamycin/gentamicin, or streptomycin. Many virulence-encoding genes were detected in the S. aureus strains, other Staphylococcaceae contained a different set of homologs of such genes. The presence of mobile genetic elements, such as plasmids and prophages, known to facilitate the dissemination of virulence- and resistance-encoding genes, was also assessed. The unsuspected high presence of two S. aureus clones in about 50% of dogs suggests dissemination within the shelter and a human source.IMPORTANCEMicrobiological data from sub-Saharan Africa are scarce compared to data from North America, Europe, or Asia, and data derived from dogs, the man's best friend, kept in sub-Saharan Africa are largely missing. This work presents data on Staphylococcaceae mainly isolated from the nasal cavity of dogs stationed at a Kenyan shelter in 2015. We characterized 92 strains isolated from 85 dogs, diseased and apparently healthy ones. The strains isolated covered nine validated species and we determined their phenotypic resistance and characterized their complete genomes. Interestingly, Staphylococcus aureus of two predominant genetic lineages, likely to be acquired from humans, colonized many dogs. We also detected 15 novel sequence types of Mammaliicoccus sciuri and S. pseudintermedius indicating sub-Saharan-specific phylogenetic lineages. The data presented are baseline data that guide antimicrobial treatment for dogs in the region.


Subject(s)
Dog Diseases , Staphylococcal Infections , Animals , Dogs , Humans , Staphylococcus aureus/genetics , Kenya , Staphylococcaceae , Phylogeny , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests , Dog Diseases/microbiology
6.
Nat Cell Biol ; 25(10): 1478-1494, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37749225

ABSTRACT

All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.


Subject(s)
Histones , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Leucine/metabolism , Histones/genetics , Histones/metabolism , Iron/metabolism , Regulatory-Associated Protein of mTOR/metabolism , Demethylation
7.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194959, 2023 09.
Article in English | MEDLINE | ID: mdl-37453649

ABSTRACT

Sterol synthesis is an iron-dependent metabolic pathway in eukaryotes. Consequently, fungal ergosterol biosynthesis (ERG) is down-regulated in response to iron deficiency. In this report, we show that, upon iron limitation or overexpression of the iron-regulated mRNA-binding protein Cth2, the yeast Saccharomyces cerevisiae down-regulates the three initial enzymatic steps of ergosterol synthesis (ERG1, ERG7 and ERG11). Mechanistically, we show that Cth2 protein limits the translation and promotes the decrease in the mRNA levels of these specific ERG genes, which contain consensus Cth2-binding sites defined as AU-rich elements (AREs). Thus, expression of CTH2 leads to the accumulation of initial sterol intermediates, such as squalene, and to the drop of ergosterol levels. Changes in CTH2 expression levels disturb the response of yeast cells to stresses related to membrane integrity such as high ethanol and sorbitol concentrations. Therefore, CTH2 should be considered as a critical regulatory factor of ergosterol biosynthesis during iron deficiency.


Subject(s)
Iron Deficiencies , Saccharomyces cerevisiae Proteins , Humans , Ergosterol/metabolism , Iron/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sterols/metabolism , Tristetraprolin/genetics , Tristetraprolin/metabolism
8.
Environ Microbiol ; 24(11): 5248-5260, 2022 11.
Article in English | MEDLINE | ID: mdl-36382795

ABSTRACT

Iron participates as an essential cofactor in the biosynthesis of critical cellular components, including DNA, proteins and lipids. The ergosterol biosynthetic pathway, which is an important target of antifungal treatments, depends on iron in four enzymatic steps. Our results in the model yeast Saccharomyces cerevisiae show that the expression of ergosterol biosynthesis (ERG) genes is tightly modulated by iron availability probably through the iron-dependent variation of sterol and heme levels. Whereas the transcription factors Upc2 and Ecm22 are responsible for the activation of ERG genes upon iron deficiency, the heme-dependent factor Hap1 triggers their Tup1-mediated transcriptional repression. The combined regulation by both activating and repressing regulatory factors allows for the fine-tuning of ERG transcript levels along the progress of iron deficiency, avoiding the accumulation of toxic sterol intermediates and enabling efficient adaptation to rapidly changing conditions. The lack of these regulatory factors leads to changes in the yeast sterol profile upon iron-deficient conditions. Both environmental iron availability and specific regulatory factors should be considered in ergosterol antifungal treatments.


Subject(s)
Iron Deficiencies , Saccharomyces cerevisiae Proteins , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Antifungal Agents/metabolism , Ergosterol/metabolism , Gene Expression Regulation, Fungal , Sterols , Heme/metabolism , Iron/metabolism , Transcription Factors/genetics
9.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36430442

ABSTRACT

Iron is an indispensable element that participates as an essential cofactor in multiple biological processes. However, when present in excess, iron can engage in redox reactions that generate reactive oxygen species that damage cells at multiple levels. In this report, we characterized the response of budding yeast species from the Saccharomyces genus to elevated environmental iron concentrations. We have observed that S. cerevisiae strains are more resistant to high-iron concentrations than Saccharomyces non-cerevisiae species. Liquid growth assays showed that species evolutionarily closer to S. cerevisiae, such as S. paradoxus, S. jurei, S. mikatae, and S. arboricola, were more resistant to high-iron levels than the more distant species S. eubayanus and S. uvarum. Remarkably, S. kudriavzevii strains were especially iron sensitive. Growth assays in solid media suggested that S. cerevisiae and S. paradoxus were more resistant to the oxidative stress caused by elevated iron concentrations. When comparing iron accumulation and sensitivity, different patterns were observed. As previously described for S. cerevisiae, S. uvarum and particular strains of S. kudriavzevii and S. paradoxus became more sensitive to iron while accumulating more intracellular iron levels. However, no remarkable changes in intracellular iron accumulation were observed for the remainder of species. These results indicate that different mechanisms of response to elevated iron concentrations exist in the different species of the genus Saccharomyces.


Subject(s)
Saccharomyces , Saccharomyces cerevisiae , Adaptation, Physiological , Acclimatization , Iron
10.
Microb Biotechnol ; 15(11): 2705-2716, 2022 11.
Article in English | MEDLINE | ID: mdl-35837730

ABSTRACT

Ergosterol is a specific sterol component of yeast and fungal membranes. Its biosynthesis is one of the most effective targets for antifungal treatments. However, the emergent resistance to multiple sterol-based antifungal drugs emphasizes the need for new therapeutic approaches. The allylamine terbinafine, which selectively inhibits squalene epoxidase Erg1 within the ergosterol biosynthetic pathway, is mainly used to treat dermatomycoses, whereas its effectiveness in other fungal infections is limited. Given that ergosterol biosynthesis depends on iron as an essential cofactor, in this report, we used the yeast Saccharomyces cerevisiae to investigate how iron bioavailability influences Erg1 expression and terbinafine susceptibility. We observed that both chemical and genetic depletion of iron decrease ERG1 expression, leading to an increase in terbinafine susceptibility. Deletion of either ROX1 transcriptional repressor or CTH1 and CTH2 post-transcriptional repressors of ERG1 expression led to an increase in Erg1 protein levels and terbinafine resistance. On the contrary, overexpression of CTH2 led to the opposite effect, lowering Erg1 levels and increasing terbinafine susceptibility. Although strain-specific particularities exist, opportunistic pathogenic strains of S. cerevisiae displayed a response similar to the laboratory strain. These data indicate that iron bioavailability and particular regulatory factors could be used to modulate susceptibility to terbinafine.


Subject(s)
Antifungal Agents , Saccharomyces cerevisiae , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Biological Availability , Ergosterol/metabolism , Ergosterol/pharmacology , Iron/metabolism , Naphthalenes/pharmacology , Naphthalenes/metabolism , Saccharomyces cerevisiae/metabolism , Sterols/metabolism , Terbinafine/pharmacology , Terbinafine/metabolism , Saccharomyces cerevisiae Proteins/metabolism
11.
Cell Rep ; 40(3): 111113, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858543

ABSTRACT

Iron dyshomeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, we provide evidence that in Saccharomyces cerevisiae, aging is associated with altered expression of genes involved in iron homeostasis. We further demonstrate that defects in the conserved mRNA-binding protein Cth2, which controls stability and translation of mRNAs encoding iron-containing proteins, increase lifespan by alleviating its repressive effects on mitochondrial function. Mutation of the conserved cysteine residue in Cth2 that inhibits its RNA-binding activity is sufficient to confer longevity, whereas Cth2 gain of function shortens replicative lifespan. Consistent with its function in RNA degradation, Cth2 deficiency relieves Cth2-mediated post-transcriptional repression of nuclear-encoded components of the electron transport chain. Our findings uncover a major role of the RNA-binding protein Cth2 in the regulation of lifespan and suggest that modulation of iron starvation signaling can serve as a target for potential aging interventions.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Tristetraprolin/metabolism , Gene Expression Regulation, Fungal , Iron/metabolism , Longevity , Mitochondria/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tristetraprolin/genetics
12.
Front Cell Infect Microbiol ; 12: 824039, 2022.
Article in English | MEDLINE | ID: mdl-35237532

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infection (UTI), a widespread infectious disease of great impact on human health. This is further emphasized by the rapidly increase in antimicrobial resistance in UPEC, which compromises UTI treatment. UPEC biology is highly complex since uropathogens must adopt extracellular and intracellular lifestyles and adapt to different niches in the host. In this context, the implementation of forefront 'omics' technologies has provided substantial insight into the understanding of UPEC pathogenesis, which has opened the doors for new therapeutics and prophylactics discovery programs. Thus, 'omics' technologies applied to studies of UPEC during UTI, or in models of UTI, have revealed extensive lists of factors that are important for the ability of UPEC to cause disease. The multitude of large 'omics' datasets that have been generated calls for scrutinized analysis of specific factors that may be of interest for further development of novel treatment strategies. In this review, we describe main UPEC determinants involved in UTI as estimated by 'omics' studies, and we compare prediction of factors across the different 'omics' technologies, with a focus on those that have been confirmed to be relevant under UTI-related conditions. We also discuss current challenges and future perspectives regarding analysis of data to provide an overview and better understanding of UPEC mechanisms involved in pathogenesis which should assist in the selection of target sites for future prophylaxis and treatment.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Urinary Tract , Uropathogenic Escherichia coli , Adaptation, Physiological , Escherichia coli Proteins/genetics , Humans , Virulence
13.
Biochim Biophys Acta Gene Regul Mech ; 1865(2): 194800, 2022 02.
Article in English | MEDLINE | ID: mdl-35218933

ABSTRACT

Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Gene Expression Regulation, Fungal , Iron/metabolism , Poly(A)-Binding Proteins/genetics , Poly(A)-Binding Proteins/metabolism , RNA Stability/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trans-Activators/metabolism , Tristetraprolin/genetics , Tristetraprolin/metabolism
14.
Microbiol Res ; 257: 126974, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35091344

ABSTRACT

Emergence of antibiotic resistant bacteria is evolving at an alarming pace; therefore, we must start turning to alternative approaches. One of these, could be the use of antibiotic adjuvants that enhances the effect of antibiotics towards resistant bacteria. A novel antibiotic adjuvant is cannabidiol (CBD), which we have previously shown can enhance the effect of bacitracin (BAC). BAC targets cell wall synthesis by inhibiting dephosphorylation of the lipid carrier undecaprenyl pyrophosphate prior to recycling across the membrane. However, the mechanism underlying this CBD mediated potentiation of BAC has remained unknown. To explore this, we examined resistance to CBD in Staphylococcus aureus through daily exposures to CBD. By subsequent whole genome sequencing, we observed multiple genes to be mutated, including the farE/farR system encoding a fatty acid efflux pump (FarE) and its regulator (FarR). Importantly, recreation of mutations in these genes showed decreased susceptibility towards the combination of CBD and BAC. Furthermore, we searched the Nebraska Transposon Mutant Library for CBD susceptible strains and identified menH encoding a protein participating in menaquinone biosynthesis. Strains containing deletions in this and other menaquinone related genes showed increased susceptibility towards CBD, while addition of exogenous menaquinone reversed the effect and reduced susceptible towards CBD. These results suggest that CBD potentiates BAC by redirecting the isoprenoid precursor isopentenyl pyrophosphate towards production of menaquinone rather than the lipid carrier undecaprenyl pyrophosphate, which dephosphorylation is inhibited by BAC. This in turn might decrease the level of undecaprenyl pyrophosphate thus enhancing the effect of BAC. Our study illustrates how antibiotic adjuvants may apply to enhance efficacy of antimicrobial compounds.


Subject(s)
Cannabidiol , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Vitamin K 2
15.
Microb Biotechnol ; 15(5): 1525-1541, 2022 05.
Article in English | MEDLINE | ID: mdl-34644442

ABSTRACT

Ferritin proteins have an enormous capacity to store iron in cells. In search for the best conditions to accumulate and store bioavailable iron, we made use of a double mutant null for the monothiol glutaredoxins GRX3 and GRX4. The strain grx3grx4 accumulates high iron concentrations in the cytoplasm, making the metal easily available for ferritin chelation. Here, we perform a comparative study between human (L and H) and soya bean ferritins (H1 and H2) function in the eukaryotic system Saccharomyces cerevisiae. We demonstrate that the four human and soya bean ferritin chains are successfully expressed in our model system. Upon coexpression of either both human or soya bean ferritin chains, respiratory conditions along with iron supplementation led us to obtain the maximum yields of iron stored in yeast described to date. Human and soya bean ferritin chains are functional and present equivalent properties as promoters of cell survival in iron overload conditions. The best system revealed that the four human and soya bean ferritins possess a novel function as anti-ageing proteins in conditions of iron excess. In this respect, both ferritin chains with oxidoreductase capacity (human-H and soya bean-H2) bear the highest capacity to extend life suggesting the possibility of an evolutionary conservation.


Subject(s)
Fabaceae , Saccharomyces cerevisiae Proteins , Saccharomycetales , Ferritins/genetics , Ferritins/metabolism , Humans , Iron/metabolism , Oxidoreductases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
16.
J Exp Bot ; 73(6): 1735-1750, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34849747

ABSTRACT

Copper and iron proteins have a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interference with other metals and protecting metal-sensitive processes. In this review, we propose that post-transcriptional modulators of metalloprotein mRNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthesis, ModMeR act as internal metal distribution valves. Inappropriate metalation of ModMeR targets could compete with metal delivery to essential metalloproteins and interfere with metal-sensitive processes, such as chloroplastic photosynthesis and mitochondrial respiration. Regulation of ModMeR targets could increase or decrease the metal flow through interconnected pathways in cellular metal distribution, helping to achieve adequate differential metal requirements. Here, we describe and compare ModMeR that function in response to copper and iron deficiencies. Specifically, we describe copper-miRNAs from Arabidopsis thaliana and diverse iron ModMeR from yeast, mammals, and bacteria under copper and iron deficiencies, as well as the influence of oxidative stress. Putative functions derived from their role as ModMeR are also discussed.


Subject(s)
Arabidopsis , Iron Deficiencies , Metalloproteins , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Copper/metabolism , Iron/metabolism , Mammals/metabolism , Metalloproteins/genetics , Metalloproteins/metabolism , Metals/metabolism , Saccharomyces cerevisiae/metabolism
17.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34928200

ABSTRACT

Uropathogenic Escherichia coli (UPEC) UTI89 is a well-characterized strain, which has mainly been used to study UPEC virulence during urinary tract infection (UTI). However, little is known on UTI89 key fitness-factors during growth in lab media and during UTI. Here, we used a transposon-insertion-sequencing approach (TraDIS) to reveal the UTI89 essential-genes for in vitro growth and fitness-gene-sets for growth in Luria broth (LB) and EZ-MOPS medium without glucose, as well as for human bacteriuria and mouse cystitis. A total of 293 essential genes for growth were identified and the set of fitness-genes was shown to differ depending on the growth media. A modified, previously validated UTI murine model, with administration of glucose prior to infection was applied. Selected fitness-genes for growth in urine and mouse-bladder colonization were validated using deletion-mutants. Novel fitness-genes, such as tusA, corA and rfaG; involved in sulphur-acquisition, magnesium-uptake, and LPS-biosynthesis, were proved to be important during UTI. Moreover, rfaG was confirmed as relevant in both niches, and therefore it may represent a target for novel UTI-treatment/prevention strategies.


Subject(s)
Bacteriuria/microbiology , Culture Media/chemistry , Cystitis/microbiology , Genes, Essential , Glucose/administration & dosage , Sequence Analysis, DNA/methods , Uropathogenic Escherichia coli/growth & development , Animals , Bacteriological Techniques , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Genetic Fitness , Glucose/chemistry , Glucose/pharmacology , High-Throughput Nucleotide Sequencing , Humans , Mice , Mutagenesis, Insertional , Uropathogenic Escherichia coli/classification , Uropathogenic Escherichia coli/genetics , Virulence Factors/genetics
18.
J Fungi (Basel) ; 7(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34829190

ABSTRACT

Iron is a vital micronutrient that functions as an essential cofactor in multiple biological processes, including oxygen transport, cellular respiration, and metabolic pathways, such as sterol biosynthesis. However, its low bioavailability at physiological pH frequently leads to nutritional iron deficiency. The yeast Saccharomyces cerevisiae is extensively used to study iron and lipid metabolisms, as well as in multiple biotechnological applications. Despite iron being indispensable for yeast ergosterol biosynthesis and growth, little is known about their interconnections. Here, we used lipid composition analyses to determine that changes in the pattern of sterols impair the response to iron deprivation of yeast cells. Yeast mutants defective in ergosterol biosynthesis display defects in the transcriptional activation of the iron-acquisition machinery and growth defects in iron-depleted conditions. The transcriptional activation function of the iron-sensing Aft1 factor is interrupted due to its mislocalization to the vacuole. These data uncover novel links between iron and sterol metabolisms that need to be considered when producing yeast-derived foods or when treating fungal infections with drugs that target the ergosterol biosynthesis pathway.

19.
Int J Biol Macromol ; 192: 600-610, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34655579

ABSTRACT

Copper (Cu) plays a key role as cofactor in the plant proteins participating in essential cellular processes, such as electron transport and free radical scavenging. Despite high-affinity Cu transporters (COPTs) being key participants in Cu homeostasis maintenance, very little is known about COPTs in tomato (Solanum lycopersicum) even though it is the most consumed fruit worldwide and this crop is susceptible to suboptimal Cu conditions. In this study, a six-member family of COPT (SlCOPT1-6) was identified and characterized. SlCOPTs have a conserved architecture consisting of three transmembrane domains and ß-strains. However, the presence of essential methionine residues, a methionine-enriched amino-terminal region, an Mx3Mx12Gx3G Cu-binding motif and a cysteine rich carboxy-terminal region, all required for their functionality, is more variable among members. Accordingly, functional complementation assays in yeast indicate that SlCOPT1 and SlCOPT2 are able to transport Cu inside the cell, while SlCOPT3 and SlCOPT5 are only partially functional. In addition, protein interaction network analyses reveal the connection between SlCOPTs and Cu PIB-type ATPases, other metal transporters, and proteins related to the peroxisome. Gene expression analyses uncover organ-dependency, fruit vasculature tissue specialization and ripening-dependent gene expression profiles, as well as different response to Cu deficiency or toxicity in an organ-dependent manner.


Subject(s)
Copper Transport Proteins/chemistry , Copper Transport Proteins/metabolism , Solanum lycopersicum/metabolism , Amino Acid Sequence , Conserved Sequence , Copper/chemistry , Copper/metabolism , Copper Transport Proteins/genetics , Gene Expression , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Molecular Conformation , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Structure-Activity Relationship
20.
Microbiology (Reading) ; 167(10)2021 10.
Article in English | MEDLINE | ID: mdl-34623231

ABSTRACT

Most uropathogenic Escherichia coli (UPEC) express type-1 fimbriae (T1F), a key virulence factor for urinary tract infection (UTI) in mice. Evidence that conclusively associates this pilus with uropathogenesis in humans has, however, been difficult to obtain. We used an experimental porcine model of cystitis to assess the role of T1F in larger mammals more closely related to humans. Thirty-one pigs were infected with UPEC strain UTI89 or its T1F deficient mutant, UTI89ΔfimH, at inoculum titres of 102 to 108 colony forming units per millilitre. Urine and blood samples were collected and analysed 7 and 14 days post-inoculation, and whole bladders were removed at day 14 and analysed for uroepithelium-associated UPEC. All animals were consistently infected and reached high urine titres independent of inoculum titre. UTI89ΔfimH successfully colonized the bladders of 1/6 pigs compared to 6/6 for the wild-type strain. Intracellular UPEC were detectable in low numbers in whole bladder explants. In conclusion, low doses of UPEC are able to establish robust infections in pigs, similar to what is presumed in humans. T1F are critical for UPEC to surpass initial bottlenecks during infection but may be dispensable once infection is established. While supporting the conclusions from mice studies regarding a general importance of T1F in successfully infecting the host, the porcine UTI models' natural high, more human-like, susceptibility to infection, allowed us to demonstrate a pivotal role of T1F in initial establishment of infection upon a realistic low-inoculum introduction of UPEC in the bladder.


Subject(s)
Cystitis/microbiology , Escherichia coli Infections/microbiology , Fimbriae, Bacterial/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/metabolism , Animals , Antibodies, Bacterial/blood , Bacterial Load , Colony Count, Microbial , Disease Models, Animal , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/immunology , Gentamicins/pharmacology , Microbial Viability/drug effects , Mutation , Swine , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/immunology , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL