Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Small ; : e2401103, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709231

The unsaturated amides are traditionally synthesized by acylation of carboxylic acids or hydration of nitrile compounds but are rarely investigated by hydroaminocarbonylation of alkynes using heterogeneous single-metal-site catalysts (HSMSCs). Herein, single-Pd-site catalysts supported on N-doping carbon (NC) with different nitrogen dimensions inherited from corresponding metal-organic-framework precursors are successfully synthesized. 2D NC-supported single-Pd-site (Pd1/NC-2D) exhibited the best performance with near 100% selectivity and 76% yield of acrylamide for acetylene hydroaminocarbonylation with better stability, superior to those of Pd1/NC-3D, single-metal-site/nanoparticle coexisting catalyst, and nanoparticle catalyst. The coordination environment and molecular evolution of the single-Pd-site during the process of acetylene hydroaminocarbonylation on Pd1/NC-2D are detailly illuminated by various characterizations and density functional theoretical calculations (DFT). DFT also showed the energy barrier of rate-determining step on Pd1/NC-2D is lower than that of Pd1/NC-3D. Furthermore, Pd1/NC-2D catalyst illustrated the general applicability of the hydroaminocarbonylation for various alkynes.

2.
Small ; : e2400240, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38593333

In this work, Pt3Fe nanoparticles (Pt3Fe NPs) with the ordered internal structure and Pt-rich shells surrounded by plenty of Fe single atoms (Fe SAs) as active species (Pt3Fe NP-in-Fe SA) loaded in the carbon materials are successfully fabricated, which are abbreviated as island-in-sea structured (IISS) Pt3Fe NP-in-Fe SA catalysts. Moreover, the synergistic effect of O-bridging between Pt3Fe NPs and Fe SAs, and the ordered internal structured Pt3Fe NPs with Pt-rich shells of an optimal thickness contributes to the achievement of the local acidic environments on the surfaces of Pt3Fe NPs in the alkaline hydrogen evolution reaction (HER) and the enhancement of the desorption rate of *OH intermediate in the acidic oxygen reduction reaction (ORR). In addition, the electronic interactions between Pt3Fe NPs and dispersed Fe SAs cannot only provide efficient electrons transfer, but also prevent the aggregation and dissolution of Pt3Fe NPs. Furthermore, the overpotential and the half wave potential of the as-prepared IISS Pt3Fe NP-in-Fe SA catalysts toward the alkaline HER and toward the acidic ORR are 8 mV at a current density of 10 mA cm-2 and 0.933 V, respectively, which is 29 lower and 86 mV higher than those (37 mV and 0.847 V) of commercial Pt/C catalysts.

3.
Nat Mater ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589543

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

4.
Nanomicro Lett ; 16(1): 136, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38411773

Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction. Herein, we present an ingenious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO2 sensing. We found that the single Pt sites on the MoS2 surface can induce easier volatilization of adjacent S species to activate the whole inert S plane. Reversely, the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms, thus creating a combined system involving S vacancy-assisted single Pt sites (Pt-Vs) to synergistically improve the adsorption ability of SO2 gas molecules. Furthermore, in situ Raman, ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere. Equipped with wireless-sensing modules, the final Pt1-MoS2-def sensors array can further realize real-time monitoring of SO2 levels and cloud-data storage for plant growth. Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.

5.
Chemphyschem ; 25(5): e202300368, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38193665

The goal of photocatalytic CO2 reduction system is to achieve near 100 % selectivity for the desirable product with reasonably high yield and stability. Here, two-dimensional metal-organic frameworks are constructed with abundant and uniform monometallic active sites, aiming to be an emerged platform for efficient and selective CO2 reduction. As an example, water-stable Cu-based metal-organic framework nanoribbons with coordinatively unsaturated single CuII sites are first fabricated, evidenced by X-ray diffraction patterns and X-ray absorption spectroscopy. In situ Fourier-transform infrared spectra and Gibbs free energy calculations unravel the formation of the key intermediate COOH* and CO* is an exothermic and spontaneous process, whereas the competitive hydrogen evolution reaction is endothermic and non-spontaneous, which accounts for the selective CO2 reduction. As a result, in an aqueous solution containing 1 mol L-1 KHCO3 and without any sacrifice reagent, the water-stable Cu-based metal-organic framework nanoribbons exhibited an average CO yield of 82 µmol g-1 h-1 with the selectivity up to 97 % during 72 h cycling test, which is comparable to other reported photocatalysts under similar conditions.

6.
Nat Commun ; 14(1): 7518, 2023 Nov 18.
Article En | MEDLINE | ID: mdl-37980409

Supported metal clusters comprising of well-tailored low-nuclearity heteroatoms have great potentials in catalysis owing to the maximized exposure of active sites and metal synergy. However, atomically precise design of these architectures is still challenging for the lack of practical approaches. Here, we report a defect-driven nanostructuring strategy through combining defect engineering of nitrogen-doped carbons and sequential metal depositions to prepare a series of Pt and Mo ensembles ranging from single atoms to sub-nanoclusters. When applied in continuous gas-phase decomposition of formic acid, the low-nuclearity ensembles with unique Pt3Mo1N3 configuration deliver high-purity hydrogen at full conversion with unexpected high activity of 0.62 molHCOOH molPt-1 s-1 and remarkable stability, significantly outperforming the previously reported catalysts. The remarkable performance is rationalized by a joint operando dual-beam Fourier transformed infrared spectroscopy and density functional theory modeling study, pointing to the Pt-Mo synergy in creating a new reaction path for consecutive HCOOH dissociations.

7.
Angew Chem Int Ed Engl ; 62(30): e202304282, 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37159106

Sulfur poisoning and regeneration are global challenges for metal catalysts even at the ppm level. The sulfur poisoning of single-metal-site catalysts and their regeneration is worthy of further study. Herein, sulfur poisoning and self-recovery are first presented on an industrialized single-Rh-site catalyst (Rh1 /POPs). A decreased turnover frequency of Rh1 /POPs from 4317 h-1 to 318 h-1 was observed in a 1000 ppm H2 S co-feed for ethylene hydroformylation, but it self-recovered to 4527 h-1 after withdrawal of H2 S, whereas the rhodium nanoparticles demonstrated poor activity and self-recovery ability. H2 S reduced the charge density of the single Rh atom and lowered its Gibbs free energy with the formation of inactive (SH)Rh(CO)(PPh3 -frame)2 , which could be regenerated to active HRh(CO)(PPh3 -frame)2 after withdrawing H2 S. The mechanism and the sulfur-related structure-activity relationship were highlighted. This work provides an understanding of heterogeneous ethylene hydroformylation and sulfur-poisoned regeneration in the science of single-atom catalysts.

8.
Angew Chem Int Ed Engl ; 62(26): e202304585, 2023 Jun 26.
Article En | MEDLINE | ID: mdl-37115736

Artificial photosynthesis is a promising strategy for converting carbon dioxide (CO2 ) and water (H2 O) into fuels and value-added chemical products. However, photocatalysts usually suffered from low activity and product selectivity due to the sluggish dynamic transfer of photoexcited charge carriers. Herein, we describe anchoring of Ag single atoms on hollow porous polygonal C3 N4 nanotubes (PCN) to form the photocatalyst Ag1 @PCN with Ag-N3 coordination for CO2 photoreduction using H2 O as the reductant. The as-synthesized Ag1 @PCN exhibits a high CO production rate of 0.32 µmol h-1 (mass of catalyst: 2 mg), a high selectivity (>94 %), and an excellent stability in the long term. Experiments and density functional theory (DFT) reveal that the strong metal-support interactions (Ag-N3 ) favor *CO2 adsorption, *COOH generation and desorption, and accelerate dynamic transfer of photoexcited charge carriers between C3 N4 and Ag single atoms, thereby accounting for the enhanced CO2 photoreduction activity with a high CO selectivity. This work provides a deep insight into the important role of strong metal-support interactions in enhancing the photoactivity and CO selectivity of CO2 photoreduction.


Nanotubes , Silver , Carbon Dioxide , Adsorption
9.
Small ; 19(2): e2204864, 2023 Jan.
Article En | MEDLINE | ID: mdl-36394082

Electrochemical activation strategy is very effective to improve the intrinsic catalytic activity of metal phosphate toward the sluggish oxygen evolution reaction (OER) for water electrolysis. However, it is still challenging to operando trace the activated reconstruction and corresponding electrocatalytic dynamic mechanisms. Herein, a constant voltage activation strategy is adopted to in situ activate Ni2 P4 O12 , in which the break of NiONi bond and dissolution of PO4 3- groups could optimize the lattice oxygen, thus reconstructing an irreversible amorphous Ni(OH)2 layer with a thickness of 1.5-3.5 nm on the surface of Ni2 P4 O12 . The heterostructure electrocatalyst can afford an excellent OER activity in alkaline media with an overpotential of 216.5 mV at 27.0 mA cm-2 . Operando X-ray absorption fine structure spectroscopy analysis and density functional theory simulations indicate that the heterostructure follows a nonconcerted proton-electron transfer mechanism for OER. This activation strategy demonstrates universality and can be used to the surface reconstruction of other metal phosphates.

10.
Angew Chem Int Ed Engl ; 62(1): e202215247, 2023 Jan 02.
Article En | MEDLINE | ID: mdl-36347791

Herein, we first design a model of reversible redox-switching metal-organic framework single-unit-cell sheets, where the abundant metal single sites benefit for highly selective CO2 reduction, while the reversible redox-switching metal sites can effectively activate CO2 molecules. Taking the synthetic Cu-MOF single-unit-cell sheets as an example, synchrotron-radiation quasi in situ X-ray photoelectron spectra unravel the reversible switching CuII /CuI single sites initially accept photoexcited electrons and then donate them to CO2 molecules, which favors the rate-liming activation into CO2 δ- , verified by in situ FTIR spectra and Gibbs free energy calculations. As an outcome, Cu-MOF single-unit-cell sheets achieve near 100 % selectivity for CO2 photoreduction to CO with a high rate of 860 µmol g-1 h-1 without any sacrifice reagent or photosensitizer, where both the activity and selectivity outperform previously reported photocatalysts evaluated under similar conditions.

11.
Angew Chem Int Ed Engl ; 61(30): e202203249, 2022 Jul 25.
Article En | MEDLINE | ID: mdl-35591804

Here, noble-metal-doped two-dimensional metal oxide nanosheets are designed to realize selective CO2 photoreduction to CH4 . As a prototype, Pd-doped CeO2 nanosheets are fabricated, where the active sites of Pdδ+ (2<δ<4) and Ce3+ -Ov are revealed by quasi in situ X-ray photoelectron spectra and in situ electron paramagnetic resonance spectra. Moreover, in situ Fourier-transform infrared spectra of D2 O photodissociation and desorption verify the existence of the Pd-OD bond, implying that Pdδ+ sites can participate in water oxidation to deliver H* species for facilitating the protonation of the intermediates. Furthermore, theoretical calculations suggest the Pd doping could regulate the formation energy barrier of the key intermediates CO* and CH3 O*, thus making CO2 reduction to CH4 become the favorable process. Accordingly, Pd-doped CeO2 nanosheets achieve nearly 100 % CH4 selectivity of CO2 photoreduction, with the raising CH4 evolution rate of 41.6 µmol g-1 h-1 .

12.
J Colloid Interface Sci ; 590: 1-11, 2021 May 15.
Article En | MEDLINE | ID: mdl-33517246

It is still a challenge to evolve visible light photocatalysts that possess both efficient oxidation and reduction capabilities. In this paper, phosphorus-doped tubular carbon nitride@UiO-66-NH2 (p-TCN@U6-X) composites were prepared by in-situ load of UiO-66-NH2 on the surface of p-TCN based on solvothermal method, which exhibit excellent photocatalytic oxidation and reduction ability. As a result, under visible light irradiation (λ > 420 nm), the photocatalytic H2 production performance of p-TCN@U6-3 reached 2628 µmol g-1h-l, which was 8.19 and 5.36 times higher than that of p-TCN and UiO-66-NH2, respectively. Meanwhile, p-TCN@U6-3 also exhibited well selectivity rate (99%) and conversion rate (98%) for oxidative coupling of amine compounds. The high photocatalytic activities can be assigned to the improved visible light adsorption resulted from the tubular structure of p-TCN and enhanced electrical conductivity because of the phosphorus doping in p-TCN. Furthermore, UiO-66-NH2 plays the role of co-catalyst and active centers in the photocatalytic system to synergistically catalyze the reactions. Transient photocurrent spectra, steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) further prove the more effective charge separation and transfer happened in the p-TCN@U6-X system compared with sole p-TCN and UiO-66-NH2, respectively. This work provides an effective method for creating novel carbon nitride-based photocatalytic systems with efficient capability for photocatalytic oxidation and reduction.

13.
J Colloid Interface Sci ; 557: 18-27, 2019 Dec 01.
Article En | MEDLINE | ID: mdl-31505334

Defective WO3 ultrathin surface-engineered nanosheets are fabricated by a solvothermal and low-temperature surface hydrogenation reduction strategy. The obtained defective WO3 ultrathin nanosheets with thicknesses of ∼4 nm possess a relatively large surface area of ∼25 m2 g-1. After surface engineering, the bandgap is narrowed to ∼2.48 eV due to the presence of surface oxygen vacancies, which further enhance the visible light absorption. The defective WO3 ultrathin nanosheets exhibit excellent solar-driven photocatalytic degradation performance for the complete degradation of the highly-toxic metribuzin herbicide (∼100%). The first-order rate constant (k) of the defective WO3 ultrathin nanosheets is ∼3 times higher than that of the pristine one. This can be ascribed to the formation of suitable surface-oxygen vacancy defects that promote the separation of photogenerated electron-hole pairs, and the two-dimensional ultrathin structure facilitating the surface engineering as well as furnishing a large number of surface active sites. Moreover, the defective WO3 ultrathin nanosheets exhibit high stability because the photocatalytic activity remains almost unchanged after 10 cycles, making them favorable for practical applications. This work offers new insights into the fabrication of other high-performance ultrathin nanosheet oxide photocatalysts for environmental applications.

14.
ACS Appl Mater Interfaces ; 11(7): 7066-7073, 2019 Feb 20.
Article En | MEDLINE | ID: mdl-30693752

Using solar energy to achieve seawater desalination and sewage disposal has received tremendous attention for its potential possibility to produce clean freshwater. However, the low solar-thermal conversion efficiency for solar absorber materials obstacles their practical applications. Herein, Ag nanoparticles modified floating carbon cloth (ANCC) are first synthesized via wet impregnation, photoreduction, and low-temperature drying strategy, which could float on the water and absorb the solar energy efficiently. It is worth noting that vaporization rate of ANCC with a high wide-spectrum absorption (92.39%) for the entire range of optical spectrum (200-2500 nm) is up to 1.36 kg h-1 m-2 under AM 1.5, which corresponds to solar-thermal conversion efficiency of ∼92.82% with superior seawater desalination and sewage disposal performance. Plasmon Ag promotes the conversion efficiency obviously compared to the pristine carbon cloth because the surface plasmon resonance effect could increase the local temperature greatly. After the desalination, the ion concentrations (Mg2+, K+, Ca2+, and Na+ ions) in water are far below the limit of drinking water. Such high-performance floating ANCC material may offer a feasible and paradigm strategy to manage the global water contamination and freshwater shortage problem.

15.
Nanotechnology ; 30(12): 125703, 2019 Mar 22.
Article En | MEDLINE | ID: mdl-30625419

NiS nanoparticles modified black TiO2 hollow nanotubes (NBTNs) are successfully synthesized via surface hydrogenation and the facile solvothermal method. The unique structure with intensified surface and interface characteristics endow NBTNs with more catalytic sites, and increase charge carrier separation efficiency with an extended charge lifetime, overwhelmingly promoting its photocatalytic performance. The resultant NBTNs possess a relatively high surface area and pore size of ∼89 m2 g-1 and ∼9.8 nm, respectively. The resultant NBTNs exhibit an excellent solar-driven photocatalytic hydrogen rate (3.17 mmol h-1 g-1), which is almost as high as that of Pt as cocatalyst, in which the apparent quantum yield of 5.4% (420 nm) is recorded for the NBTNs sample. Moreover, the turnover number can be up to 116 000 within 48 h and the turnover frequency is 2400 for NiS. This novel strategy could provide a better understanding of cocatalyst photocatalytic mechanisms, and a scheme simultaneously regulating the morphology and structure of photocatalysts for promoting H2 generation.

16.
Chem Asian J ; 14(4): 592-596, 2019 Feb 15.
Article En | MEDLINE | ID: mdl-30638312

Herein, Pt-decorated TiO2 nanocube hierarchy structure (Pt-TNCB) was fabricated by a facile solvothermal synthesis and in-situ photodeposition strategy. The Pt-TNCB exhibits an excellent solar-driven photocatalytic hydrogen evolution rate (337.84 µmol h-1 ), which is about 37 times higher than that of TNCB (9.19 µmol h-1 ). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 µmol h-1 ). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar-driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron-hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt-TNCB photocatalyst with SPR effect may provide a promising method to improve visible-light photocatalytic activities for traditional photocatalysts.

17.
Chem Asian J ; 14(1): 177-186, 2019 Jan 04.
Article En | MEDLINE | ID: mdl-30398305

Ag/mesoporous black TiO2 nanotubes heterojunctions (Ag-MBTHs) were fabricated through a surface hydrogenation, wet-impregnation and photoreduction strategy. The as-prepared Ag-MBTHs possess a relatively high specific surface area of ≈85 m2 g-1 and an average pore size of ≈13.2 nm. The Ag-MBTHs with a narrow band gap of ≈2.63 eV extend the photoresponse from UV to the visible-light and near-infrared (NIR) region. They exhibit excellent visible-NIR-driven photothermal catalytic and photocatalytic performance for complete conversion of nitro aromatic compounds (100 %) and mineralization of highly toxic phenol (100 %). The enhancement can be attributed to the mesoporous hollow structures increasing the light multi-refraction, the Ti3+ in frameworks and the surface plasmon resonance (SPR) effect of plasmonic Ag nanoparticles favoring light-harvesting and spatial separation of photogenerated electron-hole pairs, which is confirmed by transient fluorescence. The fabrication of this SPR-enhanced visible-NIR-driven Ag-MBTHs catalyst may provide new insights for designing other high-performance heterojunctions as photocatalytic and photothermal catalytic nanomaterials.

18.
Adv Mater ; 30(43): e1804282, 2018 Oct.
Article En | MEDLINE | ID: mdl-30272827

Photocatalytic hydrogen production using semiconductors is identified as one of the most promising routes for sustainable energy; however, it is challenging to harvest the full solar spectrum in a particulate photocatalyst for high activity. Herein, a hierarchical hollow black TiO2 /MoS2 /CdS tandem heterojunction photocatalyst, which allows broad-spectrum absorption, thus delivering enhanced hydrogen evolution performance is designed and synthesized. The MoS2 nanosheets not only function as a cost-effective cocatalyst but also act as a bridge to connect two light-harvesting semiconductors into a tandem heterojunction where the CdS nanoparticles and black TiO2 spheres absorb UV and visible light on both sides efficiently, coupling with the MoS2 cocatalyst into a particulate photocatalyst system. Consequently, the photocatalytic hydrogen rate of the black TiO2 /MoS2 /CdS tandem heterojunction is as high as 179 µmol h-1 per 20 mg photocatalyst under visible-light irradiation, which is almost 3 times higher than that of black TiO2 /MoS2 heterojunctions (57.2 µmol h-1 ). Most importantly, the stability of CdS nanoparticles in the black TiO2 /MoS2 /CdS tandem heterojunction is greatly improved compared to MoS2 /CdS because of the formation of tandem heterojunctions and the strong UV-absorbing effect of black TiO2 . Such a tandem architectural design provides new ways for synthesizing particulate photocatalysts with high efficiencies.

19.
J Colloid Interface Sci ; 531: 664-671, 2018 Dec 01.
Article En | MEDLINE | ID: mdl-30075318

It is desirable to develop an efficient visible-light-driven photocatalyst for practical application to degrade highly-noxious pollutants. Herein, the hydrogenation hierarchical flower-like Bi2MoO6 hollow spheres (H-BMO-X, where X represents the different hydrogen calcination temperatures) have been successfully fabricated by a solvothermal-surface hydrogenation process. The as-prepared nano-photocatalyst H-BMO-300 clearly exhibits a photocatalytic reaction apparent rate constant k for high-noxious pollutants by ∼3-times higher than pristine Bi2MoO6. Moreover, the resultant H-BMO-300 sample with a narrow bandgap of ∼2.70 eV possesses surface oxygen vacancy defects. Based on the scanning Kelvin probe and surface photovoltage spectroscopy, it is deduced that the photocatalytic activities are attributed to the surface oxygen vacancy of H-BMO-X favoring the electron-hole pair's separation. The enhanced photocatalytic performance can be ascribed to the synergistic effect of surface defects favoring efficient electron-hole separation and the hollow hierarchical structure benefiting the utilization of visible light, which provides more surface-active sites. This work provides a viable route to perceptibly enhance the photocatalytic activities of H-BMO-300 for environmental remediation with good mineralization properties.

...