Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Foods ; 13(6)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38540809

The nonantimicrobial properties and relatively poor mechanical properties of hydroxyethyl cellulose (HEC) limit its use in packaging. Sulfated rice bran polysaccharides (SRBP) possess significant antioxidant and antimicrobial activities. The purpose of this study was to investigate the effect of different concentrations of SRBP on the physical and mechanical properties and the functional characteristics of HEC/SRBP films. The physical properties of the HEC/20% SRBP films, such as water resistance, water vapor barrier, light barrier, and tensile strength, improved significantly (p < 0.05) compared with those of the HEC films. Scanning electron microscopy and Fourier transform infrared spectrometry showed that HEC formed hydrogen bonds with SRBP and exhibited better compatibility. Thermogravimetric analysis revealed that the addition of SRBP was beneficial to the thermal stability of the films. In addition, the antioxidant and bacteriostatic properties of the films were enhanced by the addition of SRBP to HEC, with the 20% SRBP films showing the most significant enhancement in activity. Therefore, the HEC/20% SRBP films show potential for development for use as active food packaging.

2.
Food Chem ; 446: 138777, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38402763

Seven novel antioxidant peptides (AWF, LWQ, WIY, YLW, LAYW, LPWG, and LYFY) exhibiting a superior activity compared to trolox were identified through in silico screening. Among these, the four peptides (WIY, YLW, LAYW, and LYFY) displayed notably enhanced performance, with ABTS activity 2.58-3.26 times and ORAC activity 5.19-8.63 times higher than trolox. Quantum chemical calculations revealed that the phenolic hydroxyl group in tyrosine and the nitrogen-hydrogen bond in the indole ring of tryptophan serve as the critical sites for antioxidant activity. These findings likely account for the potent chemical antioxidant activity. The corn peptides also exerted a protective effect against AAPH-induced cytomorphologic changes in human erythrocytes by modulating the antioxidant system. Notably, LAYW exhibited the most pronounced cytoprotective effects, potentially due to its high content of hydrophobic amino acids.


Antioxidants , Glutens , Humans , Antioxidants/chemistry , Glutens/chemistry , Zea mays/chemistry , Peptides/chemistry , Phenols
3.
Foods ; 12(17)2023 Aug 22.
Article En | MEDLINE | ID: mdl-37685089

Cherry tomatoes are easily damaged due to their high moisture content. A composite coating was developed to delay deterioration and prolong storage by mixing antibacterial sulfated rice bran polysaccharides (SRBP) and edible hydroxyethyl cellulose (HEC) with film-forming properties. The effects of HEC, HEC-5% SRBP, and HEC-20% SRBP preservative coatings on the maintenance of the quality of cherry tomatoes (LycopersivonesculentumMill., Xiaohuang F2) during cold storage were investigated. The HEC-20% SRBP coating significantly reduced tomato deterioration and weight loss, delayed firmness loss, decreased polyphenol oxidase activity, and increased peroxidase activity. Furthermore, cherry tomatoes treated with HEC-20% SRBP maintained high levels of titratable acid, ascorbic acid, total phenols, and carotenoids. Cherry tomatoes coated with HEC-SRBP also had higher levels of volatile substances and a greater variety of these substances compared to uncoated tomatoes. In conclusion, the HEC-20% SRBP coating effectively delayed deterioration and preserved cherry tomatoes' nutrient and flavor qualities during postharvest cold storage, suggesting it could be a novel food preservation method.

4.
Int J Biol Macromol ; 236: 123851, 2023 May 01.
Article En | MEDLINE | ID: mdl-36863670

This study aimed to investigate the structural characterization, conformational properties, and hepatoprotective activity of corn silk acidic polysaccharide (CSP-50E). CSP-50E with molecular weights of 1.93 × 105 g/mol was composed of Gal, Glc, Rha, Ara, Xyl, Man and uronic acid with a weight ratio of 12:25:1:2:2:5:21. Structural analysis with methylation indicated that CSP-50E mainly contained T-Manp, 4-substituted-D-Galp/GalpA, and 4-substituted-D-Glcp. CSP-50E presented random coils conformation in an aqueous solution based on the analysis of HPSEC. In vitro experiments showed that CSP-50E exhibited significant hepatoprotective effects, CSP-50E reduce IL-6, TNF-α content, and AST, ALT activity to protect ethanol-induced damage liver cells (HL-7702), while the polysaccharide functioned mainly through the caspase cascade and mediate the mitochondrial apoptosis pathway. In this study, we describe a novel acidic polysaccharide from corn silk with hepatoprotective activity that facilitates the development and utilization of corn silk resources.


Polysaccharides , Zea mays , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Ethanol , Silk
5.
Food Chem X ; 18: 100653, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-36993870

Citrus reticulatae pericarpium (CRP) is regarded as a valuable functional food in many countries due to its pharmacological activities and unique aroma. In this study, CRP was treated by different A. niger to accelerate aging. Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) fingerprinting was adopted to rapidly and comprehensively evaluate the flavor compounds of CRP and to identify their dynamic changes at different storage time. Results revealed that the hesperidin content of DOL groups reduced more clearly than other groups during storage. A total of 134 volatile flavor compounds were identified. The volatile organic compounds (VOCs) showed that the lemon, sweet with the musk aroma of CRP, changed to apple, pineapple, and coffee odors during storage. The principal component analysis (PCA) and fingerprint similarity analysis (FSA) results showed that the CRP was clearly distinguished at different storage time. DOL-3 and DOS-6 differ the most from the DOW-3,6, respectively. This work provided helpful information for accelerating the aging of CRP and has great potential for industrial application.

6.
Foods ; 12(3)2023 Feb 02.
Article En | MEDLINE | ID: mdl-36766168

Rice bran is a "treasure house of natural nutrition". Even so, utilization of rice bran is often ignored, and this has resulted in the wastage of nutrients. Polysaccharides are one of the active substances in rice bran that have gained widespread attention for their antioxidant, antitumor, immune-enhancing, antibacterial, and hypoglycemic properties. This review summarizes the extraction methods, structural characterization, bioactivity, and application of rice bran polysaccharides that have been developed and studied in recent years, laying a foundation for its development into foods and medicines. In addition, we also discuss the prospects for future research on rice bran polysaccharides.

7.
Polymers (Basel) ; 15(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36616574

Arabinoxylan (AX) is a polysaccharide composed of arabinose, xylose, and a small number of other carbohydrates. AX comes from a wide range of sources, and its physicochemical properties and physiological functions are closely related to its molecular characterization, such as branched chains, relative molecular masses, and substituents. In addition, AX also has antioxidant, hypoglycemic, antitumor, and proliferative abilities for intestinal probiotic flora, among other biological activities. AXs of various origins have different molecular characterizations in terms of molecular weight, degree of branching, and structure, with varying structures leading to diverse effects of the biological activity of AX. Therefore, this report describes the physical properties, biological activities, and applications of AX in diverse plants, aiming to provide a theoretical basis for future research on AX as well as provide more options for crop breeding.

8.
Int J Mol Sci ; 23(18)2022 Sep 10.
Article En | MEDLINE | ID: mdl-36142414

Calmodulin-binding transcription activator (CAMTA) is a transcription factor family containing calmodulin (CaM) binding sites and is involved in plant development. Although CAMTAs in Arabidopsis have been extensively investigated, the functions of CAMTAs remain largely unclear in peaches. In this study, we identified five peach CAMTAs which contained conserved CG-1 box, ANK repeats, CaM binding domain (CaMBD) and IQ motifs. Overexpression in tobacco showed that PpCAMTA1/2/3 were located in the nucleus, while PpCAMTA4 and PpCAMTA5 were located in the plasma membrane. Increased expression levels were observed for PpCAMTA1 and PpCAMTA3 during peach fruit ripening. Expression of PpCAMTA1 was induced by cold treatment and was inhibited by ultraviolet B irradiation (UV-B). Driven by AtCAMTA3 promoter, PpCAMTA1/2/3 were overexpressed in Arabidopsis mutant. Here, we characterized peach PpCAMTA1, representing an ortholog of AtCAMTA3. PpCAMTA1 expression in Arabidopsis complements the developmental deficiencies of the camta2,3 mutant, and restored the plant size to the wild type level. Moreover, overexpressing PpCAMTA1 in camta2,3 mutant inhibited salicylic acid (SA) biosynthesis and expression of SA-related genes, resulting in a susceptibility phenotype to Pst DC3000. Taken together, our results provide new insights for CAMTAs in peach fruit and indicate that PpCAMTA1 is associated with response to stresses during development.


Arabidopsis , Prunus persica , Arabidopsis/metabolism , Calmodulin/metabolism , Ectopic Gene Expression , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus persica/genetics , Prunus persica/metabolism , Salicylic Acid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Int J Mol Sci ; 23(13)2022 Jun 27.
Article En | MEDLINE | ID: mdl-35806145

Controlled atmosphere (CA) has been used to alleviate chilling injury (CI) of horticultural crops caused by cold storage. However, the effects of CA treatment on peach fruit sensory quality and flavor-related chemicals suffering from CI remain largely unknown. Here, we stored peach fruit under CA with 5% O2 and 10% CO2 at 0 °C up to 28 d followed by a subsequent 3 d shelf-life at 20 °C (28S3). CA significantly reduced flesh browning and improved sensory quality at 28S3. Though total volatiles declined during extended cold storage, CA accumulated higher content of volatile esters and lactones than control at 28S3. A total of 14 volatiles were positively correlated with consumer acceptability, mainly including three C6 compounds, three esters and four lactones derived from the fatty acid lipoxygenase (LOX) pathway. Correspondingly, the expression levels of genes including PpLOX1, hyperoxide lyase PpHPL1 and alcohol acyltransferase PpAAT1 were positively correlated with the change of esters and lactones. CA elevated the sucrose content and the degree of fatty acids unsaturation under cold storage, which gave us clues to clarify the mechanism of resistance to cold stress. The results suggested that CA treatment improved sensory quality by alleviating CI of peach fruits under cold storage.


Prunus persica , Atmosphere , Cold Temperature , Esters/metabolism , Food Storage , Fruit/metabolism , Gene Expression , Lactones/metabolism , Prunus persica/metabolism
10.
Front Plant Sci ; 13: 814677, 2022.
Article En | MEDLINE | ID: mdl-35646008

Carotenoids are essential pigments widely distributed in tissues and organs of higher plants, contributing to color, photosynthesis, photoprotection, nutrition, and flavor in plants. White- or yellow-fleshed colors in peach were determined by expression of carotenoids cleavage dioxygenase (PpCCD) genes, catalyzing the degradation of carotenoids. The cracked volatile apocarotenoids are the main contributors to peach aroma and flavor with low sensory threshold concentration. However, the detailed regulatory roles of carotenoids metabolism genes remained unclear under UV-B irradiation. In our study, metabolic balance between carotenoids and apocarotenoids was regulated by the expression of phytoene synthase (PSY), ß-cyclase (LCY-B), ε-cyclase (LCY-E), and PpCCD4 under UV-B irradiation. The transcript levels of PpPSY, PpLCY-B, PpLCY-E, and PpCHY-B were elevated 2- to 10-fold compared with control, corresponding to a nearly 30% increase of carotenoids content after 6 h UV-B irradiation. Interestingly, the total carotenoids content decreased by nearly 60% after 48 h of storage, while UV-B delayed the decline of lutein and ß-carotene. The transcript level of PpLCY-E increased 17.83-fold compared to control, partially slowing the decline rate of lutein under UV-B irradiation. In addition, the transcript level of PpCCD4 decreased to 30% of control after 48 h UV-B irradiation, in accordance with the dramatic reduction of apocarotenoid volatiles and the delayed decrease of ß-carotene. Besides, ß-ionone content was elevated by ethylene treatment, and accumulation dramatically accelerated at full ripeness. Taken together, UV-B radiation mediated the metabolic balance of carotenoid biosynthesis and catabolism by controlling the transcript levels of PpPSY, PpLCY-B, PpLCY-E, and PpCCD4 in peach, and the transcript level of PpCCD4 showed a positive relationship with the accumulation of ß-ionone during the ripening process. However, the detailed catalytic activity of PpCCD4 with various carotenoid substrates needs to be studied further, and the key transcript factors involved in the regulation of metabolism between carotenoids and apocarotenoids need to be clarified.

11.
Foods ; 11(12)2022 Jun 18.
Article En | MEDLINE | ID: mdl-35741999

The synergistic effect of frozen-phase high pressure (HP) on the inactivation of E. coli ATCC 25922 cultures in suspension medium, Chinese bayberry juice (pH 3.0), and carrot juice (pH 6.5) was evaluated. The survivor count of E. coli remained at 3.36 log CFU/mL on a nonselective brain heart infusion (BHIA) medium, while no survivor was detected on a selective violet red bile agar (VRBA) medium after a 5 min hold pressure at 250 MPa in a frozen culture suspension. BHIA was suitable for safe testing of the injured E coli cells after HP treatment in frozen state. Frozen Chinese bayberry juice showed higher sensitivity to HP treatment for its matrix property with high sterilizing efficiency at 170 MPa. Two pulses exhibited a significant inactivation effect in frozen samples compared with one pulse, especially for the Chinese bayberry juice with different pressure levels. The destruction kinetics of HP pulse mode followed the first-order rate kinetics with a Zp value of 267 MPa in frozen carrot juice. Our results evaluated the influenced factors of frozen HP destruction effects, including the medium, substrate, and application mode. The frozen HP destruction kinetics of pulses afford us better understanding of the technology application in the food industry.

12.
J Agric Food Chem ; 68(13): 3947-3953, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32157879

Vascular oxidative stress, inflammatory response, and proliferation are crucial mediators of vascular dysfunction which contribute to the pathology of hypertension. A tripeptide, LRW (Leu-Arg-Trp), was characterized from pea protein legumin, and its previously studied isomer IRW (Ile-Arg-Trp) was reported to exhibit antihypertensive activity via activation of angiotensin-converting enzyme 2. The objective of the current study was to explore the effects of LRW on vascular stress in vascular smooth muscle cells (VSMCs) under angiotensin II (Ang II)-induced cellular stress. LRW treatment could decrease Ang II-triggered superoxide production, inflammation, and proliferation in VSMCs. The abovementioned advantageous effects appeared to involve the upregulation of the ACE2-Ang-(1-7)-MasR axis and modulation of the nuclear factor-κB pathway. These findings specified the prospective role of LRW as a functional food ingredient or nutraceutical in the prevention of cardiovascular diseases, particularly hypertension and vascular damage.


Angiotensin II/metabolism , Antihypertensive Agents/pharmacology , Hypertension/metabolism , Muscle, Smooth, Vascular/drug effects , Oligopeptides/pharmacology , Pisum sativum/chemistry , Angiotensin II/genetics , Animals , Aorta/cytology , Aorta/drug effects , Humans , Hypertension/drug therapy , Hypertension/genetics , Hypertension/physiopathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Mas , Rats , Superoxides/metabolism
13.
Int J Mol Sci ; 21(4)2020 Feb 13.
Article En | MEDLINE | ID: mdl-32070060

The acetohydroxyacid synthase (AHAS) is an essential enzyme involved in branched amino acids. Several herbicides wither weeds via inhibiting AHAS activity, and the AHAS mutants show tolerance to these herbicides. However, most AHAS mutations are residue substitutions but not residue deletion. Here, residue deletion was used to engineering the AHAS gene and herbicide-tolerant rice. Molecular docking analysis predicted that the W548 of the AHAS was a residue deletion to generate herbicide tolerance. The AHAS-ΔW548 protein was generated in vitro to remove the W548 residue. Interestingly, the deletion led to the tetramer dissociation of the AHAS, while this dissociation did not reduce the activity of the AHAS. Moreover, the W548 deletion contributed to multi-family herbicides tolerance. Specially, it conferred more tolerance to sulfometuron-methyl and bispyribac-sodium than the W548L substitution. Further analysis revealed that AHAS-ΔW548 had the best performance on the sulfometuron-methyl tolerance compared to the wild-type control. Over-expression of the AHAS-ΔW548 gene into rice led to the tolerance of multiple herbicides in the transgenic line. The T-DNA insertion and the herbicide treatment did not affect the agronomic traits and yields, while more branched-chain amino acids were detected in transgenic rice seeds. Residue deletion of W548 in the AHAS could be a useful strategy for engineering herbicide tolerant rice. The increase of branched-chain amino acids might improve the umami tastes of the rice.


Acetolactate Synthase/genetics , Herbicide Resistance/genetics , Oryza/genetics , Plants, Genetically Modified/genetics , Gene Deletion , Gene Expression Regulation, Plant , Herbicides/adverse effects , Mutation/genetics , Oryza/drug effects , Plants, Genetically Modified/growth & development
14.
Int J Biol Macromol ; 150: 246-252, 2020 May 01.
Article En | MEDLINE | ID: mdl-32014475

Stigma maydis, an ingredient of pharmaceuticals and healthy foods, has a long history of usage in China and some occidental countries. Polysaccharide (SMP) is supposed to be one of the major bioactive compounds in stigma maydis, which possesses immune-enhancement, antitumor, antioxidant, anti-fatigue, diuretic, liver protection, antihyperglycaemic and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics and biological activities of polysaccharides were summarized. Their biological activities were introduced on the basis of vivo experiments, and some possible mechanisms were listed. Furthermore, industrial application of SMPs were reviewed and discussed. New perspectives for the future work of stigma maydis polysaccharide were also proposed.


Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Zea mays/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Chemical Fractionation , Chemical Phenomena , Dietary Carbohydrates , Humans , Molecular Structure , Molecular Weight , Plant Extracts/isolation & purification , Plants, Medicinal/chemistry , Polysaccharides/isolation & purification , Protective Agents/chemistry , Protective Agents/isolation & purification , Protective Agents/pharmacology , Structure-Activity Relationship
...