Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(23): 8651-8663, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873071

ABSTRACT

Na3V2(PO4)3 (NVP) cathode materials with the advantages of long cycle life and superior thermal stability have been considered promising cathode candidates for SIBs. However, the unsatisfactory energy density derived from low theoretical capacity and operating voltage (3.35 V vs. Na+/Na, based on the V3+/V4+ redox couple) inevitably limits their practical application. Therefore, the activation of the V4+/V5+ redox couple (∼4.0 V vs. Na+/Na) in NVP-based cathode materials to boost the energy density of SIBs has attracted extensive attention. Herein, we first analyze the challenges of activation of the V4+/V5+ redox couple in NVP-based cathode materials. Subsequently, the recent achievement of NVP-based cathode materials with activated V4+/V5+ redox reactions for SIBs is overviewed. Finally, further research directions of high voltage V4+/V5+ redox reactions in NVP-based cathodes are proposed. This review provides valuable guidance for developing high energy density NVP-based cathode materials for SIBs.

2.
Angew Chem Int Ed Engl ; 63(15): e202400281, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38339811

ABSTRACT

The development of highly efficient electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells is of decisive importance to hold higher energy efficiency. Despite some achievements, their progress, especially electrocatalytic selectivity to complete oxidated C1 products, is remarkably slower than expected. In this work, we developed a facile aqueous synthesis of Ir-doped CuPd single-crystalline mesoporous nanotetrahedrons (Ir-CuPd SMTs) as high-performance electrocatalyst for promoting oxidation cleavage of C-C bond in alkaline EG oxidation reaction (EGOR) electrocatalysis. The synthesis relied on precise reduction/co-nucleation and epitaxial growth of Ir, Cu and Pd precursors with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra Br- as the facet-selective agent under ambient conditions. The products featured concave nanotetrahedron morphology enclosed by well-defined (111) facets, single-crystalline and mesoporous structure radiated from the center, and uniform elemental composition without any phase separation. Ir-CuPd SMTs disclosed remarkably enhanced electrocatalytic activity and excellent stability as well as superior selectivity of C1 products for alkaline EGOR electrocatalysis. Detailed mechanism studies demonstrated that performance improvement came from structural and compositional synergies, which kinetically accelerated transports of electrons/reactants within active sites of penetrated mesopores and facilitated oxidation cleavage of high-energy-barrier C-C bond of EG for desired C1 products. More interestingly, Ir-CuPd SMTs performed well in coupled electrocatalysis of anode EGOR and cathode nitrate reduction, highlighting its high potential as bifunctional electrocatalyst in various applications.

3.
Angew Chem Int Ed Engl ; 63(7): e202318043, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38135669

ABSTRACT

A key task in today's inorganic synthetic chemistry is to develop effective reactions, routes, and associated techniques aiming to create new functional materials with specifically desired multilevel structures and properties. Herein, we report an ultrathin two-dimensional layered composite of graphene ribbon and silicate via a simple and scalable one-pot reaction, which leads to the creation of a novel carbon-metal-silicate hybrid family: carbosilicate. The graphene ribbon is in situ formed by unzipping carbon nanotubes, while the ultrathin silicate is in situ obtained from bulk silica or commercial glass; transition metals (Fe or Ni) oxidized by water act as bridging agent, covalently bonding the two structures. The unprecedented structure combines the superior properties of the silicate and the nanocarbon, which triggers some specific novel properties. All processes during synthesis are complementary to each other. The associated synergistic chemistry could stimulate the discovery of a large class of more interesting, functionalized structures and materials.

4.
ACS Nano ; 17(16): 15424-15440, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552584

ABSTRACT

Infection diseases such as AIDS and COVID-19 remain challenging in regard to protective vaccine design, while adjuvants are critical for subunit vaccines to induce strong, broad, and durable immune responses against variable pathogens. Here, we demonstrate that periodic mesoporous organosilica (PMO) acts as a multifunctional nanoadjuvant by adsorbing recombinant protein antigens. It can effectively deliver antigens to lymph nodes (LNs), prolong antigen exposure, and rapidly elicit germinal center (GC) responses by directly activating naive B cells via the C-type lectin receptor signaling pathway. In mice, both the gp120 trimer (HIV-1 antigen) and the receptor-binding domain (SARS-CoV-2 antigen) with the PMO nanoadjuvant elicit potent and durable antibodies that neutralize heterologous virus strains. LN immune cells analysis shows that PMO helps to effectively activate the T-follicular helper cells, GC B cells, and memory B cells and eventually develop broad and durable humoral responses. Moreover, the PMO nanoadjuvant elicits a strong cellular immune response and shapes this immune response by eliciting high levels of effector T helper cell cytokines. This study identifies a promising nanoadjuvant for subunit vaccines against multiple pathogens.


Subject(s)
COVID-19 , Animals , Mice , SARS-CoV-2 , Germinal Center , B-Lymphocytes , Antigens , Vaccines, Subunit
5.
Angew Chem Int Ed Engl ; 62(29): e202306261, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37222120

ABSTRACT

The development of efficient catalyst for selective oxidation of hydrocarbon to functional compounds remains a challenge. Herein, mesoporous Co3 O4 (mCo3 O4 -350) showed excellent catalytic activity for selective oxidation of aromatic-alkanes, especially for oxidation of ethylbenzene with a conversion of 42 % and selectivity of 90 % for acetophenone at 120 °C. Notably, mCo3 O4 presented a unique catalytic path of direct oxidation of aromatic-alkanes to aromatic ketones rather than the conventional stepwise oxidation to alcohols and then to ketones. Density functional theory calculations revealed that oxygen vacancies in mCo3 O4 activate around Co atoms, causing electronic state change from Co3+ (Oh) →Co2+ (Oh) . Co2+ (Oh) has great attraction to ethylbenzene, and weak interaction with O2 , which provide insufficient O2 for gradual oxidation of phenylethanol to acetophenone. Combined with high energy barrier for forming phenylethanol, the direct oxidation path from ethylbenzene to acetophenone is kinetically favorable on mCo3 O4 , sharply contrasted to non-selective oxidation of ethylbenzene on commercial Co3 O4 .

6.
Angew Chem Int Ed Engl ; 62(24): e202304420, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37057712

ABSTRACT

The intermetallic phase control is a promising strategy to optimize the physicochemical properties of ordered intermetallic compounds and engineer their performance in various (electro)catalytic reactions. However, the intermetallic phase-dependent catalytic performance is still rarely reported because of the difficulty in synthesizing ordered intermetallics with precisely controlled phase structures at atomic level, especially having ordered mesoscopic structure/morphology. Here, we successfully reported a precise synthesis of two phase-pure mesoporous intermetallic gallium-platinum (meso-i-Ga-Pt) nanoparticles, including meso-i-Ga3 Pt5 with an orthorhombic space group and meso-i-Ga1 Pt1 with a non-symmorphic chiral cubic space group. The intermetallic phase control of ordered meso-i-Ga-Pt nanoparticles was realized by carefully tuning the induced Ga salts with different anions that optimized the free energies during the synthesis. The intermetallic phase-dependent catalytic performance of ordered meso-i-Ga-Pt was systematically evaluated for oxygen reduction reaction (ORR) electrocatalysis, with completely opposite catalytic performance in alkaline media. Interestingly, ordered meso-i-Ga1 Pt1 catalyst with chiral atomic arrangements disclosed unexpected high ORR activity and stability with 5.9 and 3.2 enhancement factors in mass activity compared to those of meso-i-Ga3 Pt5 and commercial Pt/C.

7.
Adv Mater ; 35(18): e2300396, 2023 May.
Article in English | MEDLINE | ID: mdl-36807380

ABSTRACT

The photoresponse and photocatalytic efficiency of bismuth oxychloride (BiOCl) are greatly limited by rapid recombination of photogenerated carriers. The construction of porous single-crystal BiOCl photocatalyst can effectively alleviate this issue and provide accessible active sites. Herein, a facile chelated ion-exchange strategy is developed to synthesize BiOCl mesoporous single-crystalline nanosheets (BiOCl MSCN) using acetic acid and ammonia solution respectively as chelating agent and ionization promoter. The strong chelation between acetate ions and Bi3+ ions introduces acetate ions into the precipitated product to exchange with Cl- ions, resulting in large lattice mismatch, strain release, and formation of void-like mesopores. The prepared BiOCl MSCN photocatalyst exhibits excellent catalytic performance with 99% conversion and 98% selectivity for oxidation of benzyl alcohol to benzaldehyde and superior general adaptability for various aromatic alcohols. The theoretical calculations and characterizations confirm that the superior performance is mainly attributed to the abundant oxygen vacancies, plenty of accessible adsorption/active sites and fast charge transport path without grain boundaries.

8.
Adv Mater ; 35(11): e2209635, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36596977

ABSTRACT

Supported metal catalysts have played an important role in optimizing selective semihydrogenation of alkynes for fine chemicals. There into, nitrogen-doped carbons, as a type of promising support materials, have attracted extensive attentions. However, due to the general phenomenon of random doping for nitrogen species in the support, it is still atremendous challenge to finely identify which nitrogen configuration dominates the catalytic property of alkynes' semihydrogenation. Herein, it is reported that uniform mesoporous N-doped carbon spheres derived from mesoporous polypyrrole spheres are used as supports to immobilized subnanometric Pd clusters, which provide a particular platform to research the influence of nitrogen configurations on the alkynes' semihydrogenation. Comprehensive experimental results and density functional theory calculation indicate that pyridinic nitrogen configuration dominates the catalytic behavior of Pd clusters. The high contents of pyridinic nitrogen sites offer abundant coordination sites, which greatly reduces the energy barrier of the rate-determining reaction step and makes Pd clusters own high catalytic activity. The electron effect between pyridinic nitrogen sites and Pd clusters makes the reaction highly selective. Additionally, the good mesostructures also promote the fast transport of substrate. Based on the above, catalyst Pd@PPy-600 exhibits high catalytic activity (99%) and selectivity (96%) for phenylacetylene (C8 H6 ) semihydrogenation.

9.
Small ; 19(3): e2205693, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36408773

ABSTRACT

Two-dimensional (2D) mesoporous polymers, combining the advantages of organic polymers, porous materials, and 2D materials, have received great attention in adsorption, catalysis, and energy storage. However, the synthesis of 2D mesoporous polymers is not only challenged by the complex 2D structure construction, but also by the low yield and difficulty in controlling the dynamics of the assembly during the generation of mesopores. Herein, a facile multi-dimensional molecular self-assembly strategy is reported for the preparation of 2D mesoporous polydiaminopyridines (MPDAPs), which features tunable pore sizes (17-35 nm) and abundant N content up to 18.0 at%. Benefitting from the abundant N sites, 2D nanostructure, and uniform-large mesopores, the 2D MPDAPs exhibit excellent catalytic performance for the Knoevenagel condensation reaction. After calcination under N2 atmosphere, the obtained 2D N-doped mesoporous carbon (NMCs) with large and uniform pore sizes, high surface areas, abundant N content (up to 23.1%), and a high ratio of basic N species (57.0% pyridinic N and 35.9% pyrrolic N) can show an excellent CO2 uptake density (11.7 µmol m-2 at 273 K), higher than previously reported porous materials.

10.
Adv Mater ; 34(42): e2206025, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127265

ABSTRACT

The enormous complexity of the carbon material family has provoked a phenomenological approach to develop its potential in different applications. Although the electronic, chemical, mechanical, and magnetic properties of carbon materials have been widely discussed based on defect control engineering, there is still a lack of fundamental understanding of the carbon surface chemistry, which leads to many controversial conclusions. Here, by analyzing various defects on carbon surface, some commonly neglected aspects and misunderstandings in this field are pointed out, clarifying how surface chemistry affects the chemical behaviors of carbon in some specific chemical reactions. With this full-scale consideration of the carbon surface chemistry, the behaviors of carbon materials with various functions can be well defined, which is indispensable for their scalable applications. Perspectives on future developments of carbon surface chemistry are also provided to enable practically accessible design of advanced carbon in those applications.

11.
Angew Chem Int Ed Engl ; 61(37): e202209038, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35864559

ABSTRACT

The ordered mesoporous perovskite oxides with well-defined mesostrcture and versatile metal sites are attractive, but their successful synthesis faces challenges of complicated assembly dynamics and pore collapse in crystalline calcination. Here, we propose an energy balance concept to reveal interplay relationship in assembly process and realize regulation of porous structure for mesoporous perovskite oxides. A series of ordered mesoporous perovskite oxides with unique porous structure were prepared by a modular co-assembly method. Mesoporous La2 Zr2 O7 shows 94 % conversion and 99 % selectivity for hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan. Experiments reveal that rich Lewis acid sites, active Zr species, and favorable porous structure promote interaction between mesoporous La2 Zr2 O7 and HMF and reduce catalytic energy barrier. This work provides the insight into molecule co-assembly and developing multiple component ordered mesoporous materials.

12.
Angew Chem Int Ed Engl ; 61(27): e202203967, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35471735

ABSTRACT

The functional groups in porous carbon generally suffer a severe loss during the high-temperature carbonization. Instead, the low-temperature synthesis of carbon featuring porous structures and abundant functional groups is not only a solution that evades the pitfalls of pyrolysis but also is of significance for the development of synthetic methodology. Herein, a liquid metal interfacial engineering strategy is reported for the synthesis of porous carbon using CCl4 as the carbon precursor and sodium-potassium alloy (NaK) as the reducing agent, which is superior to traditional synthetic methods because it enables the engineering of a highly active liquid metal alloy microemulsion to directly generate porous carbon at ambient temperature. As synthesized porous carbon featured abundant carbon-chlorine bonds can be tandem-grafted with imidazole and 1,2-dibromoethane to achieve a CO2 cycloaddition catalyst, which exhibits excellent catalytic activity, in addition to exceptional stability.

13.
Nano Lett ; 22(9): 3691-3698, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35451303

ABSTRACT

Synthetic polymer-derived hollow carbon spheres have great utilitarian value in many fields for which the synthesis of proper polymer precursors is a key process. The exploration of new suitable polymer precursors and the construction of refined hollow structures in emerging polymers are both of great significance for synthetic methodology and novel carbon materials. Here, for the first time Schiff base polymer (SBP) colloid spheres with refined hollow structures were synthesized by tandem gradient growth and confined polymerization processes. The Hill equation was employed as a mathematical model to explain the gradient growth of SBP spheres. The size-dependent inner structure of SBP spheres can be adjusted from hollow to multichamber-surrounded hollow, and then to a multichamber structure. SBP-derived carbon spheres having similar surface area and chemical composition but different inner structures provide an effective way to investigate the relationship between inner structure and performance.


Subject(s)
Carbon , Polymers , Carbon/chemistry , Microspheres , Polymerization , Polymers/chemistry , Schiff Bases
14.
Acta Biomater ; 143: 392-405, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35259519

ABSTRACT

Traditional anticancer treatments directly target tumor cells. In contrast, cancer immunotherapy fortifies host immunity. Nanoparticles that incorporate both immunomodulatory and chemotherapeutic agents regulate the tumor microenvironment by activating immune cells and enhancing antitumor immunity. Nanoparticle-based cancer immunotherapy has received considerable attention and has been extensively studied in recent years. In this study, we developed a targeted drug delivery system to enhance immunotherapeutic efficacy and overcome drug resistance by inducing tumor apoptosis and immunogenic cell death (ICD), and activating immune cells. Periodic mesoporous organosilica nanoparticles (PMOs) bore tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on their surfaces, and their inner cores were loaded with doxorubicin (DOX). TRAIL enhanced the nanoparticle-targeting capacity and worked synergistically with DOX against breast cancer cells in vitro and in vivo. Furthermore, we revealed for the first time the ability of PMOs to activate dendritic cells (DCs) and elevate ICD levels of DOX in vitro, and TRAIL further enhances the immunomodulatory function of PMOs. Systemic exposure to DOX@PMO-hT induced an immune response, activated DCs and CD4+ and CD8+ T cells, and significantly suppressed tumor growth in a 4T1-bearing immunocompetent mouse model. Overall, our study demonstrates that TRAIL-modified, DOX-embedded PMO nanoparticles represent a good candidate for tumor-targeted immunotherapy, which has relatively superior therapeutic efficacy and highly promising future application prospects. STATEMENT OF SIGNIFICANCE: This study revealed for the first time the ability of PMOs to elevate ICD levels and activate DCs in vitro. The results explained the immunomodulatory function of PMOs and demonstrated the synergistic effects of TRAIL and DOX in triple-negative breast cancer. In addition, immunomodulatory effects of the drug delivery vectors constructed in this study were verified in vivo.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Humans , Immunotherapy , Mice , Mice, Inbred BALB C , Nanoparticles/therapeutic use , Tumor Microenvironment
15.
Macromol Rapid Commun ; 43(14): e2100923, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35134260

ABSTRACT

The design of porous noble metal catalysts holds great promise in various electrocatalytic applications. However, it is still a challenge to improve the durability performance through constructing stable framework. Here, an interface and charge induced strategy is developed to synthesize large-sized continuous reduced graphene oxide@mesoporous platinum (denoted as rGO@mPt) sheets under kinetic control by molecular self-assembly design. Graphene oxide (GO) is a promising large-sized growth interface for platinum. Cationic surfactant dioctadecyldimethylammonium chloride bridges the negatively charged GO and platinum precursors, while creating interconnected mesopores. The successful synthesis of rGO@mPt sheets relies on proper kinetic control, which is achieved by controlling pH, temperature, and the complexation of bromide ions. rGO@mPt sheets present strong crystallinity with a pure face-centered cubic Pt phase. Worm-like mesostructures with an average pore size of 2.2 nm exist throughout the sheets. rGO@mPt sheets possess both stable framework and abundant active sites, which markedly improve the durability on methanol oxidation reaction while maintaining relatively good catalytic activity. Long-term stability test shows a slight loss of 1.2% activity after 250 cycles. Amperometric i-t curves reveal the mass current three times higher compared to commercial Pt/C at 3000 s.


Subject(s)
Graphite , Platinum , Catalysis , Graphite/chemistry , Oxidation-Reduction , Platinum/chemistry
16.
ChemSusChem ; 14(20): 4353, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34590789

ABSTRACT

Invited for this month's cover is the group of Zhen-An Qiao at the Jilin University. The image shows the application of 2D ordered mesoporous carbon/MXene heterostructures in supercapacitors. The Full Paper itself is available at 10.1002/cssc.202101374.

17.
Angew Chem Int Ed Engl ; 60(45): 24299-24305, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34498361

ABSTRACT

Triazine-based materials with porous structure have recently received numerous attentions as a fascinating new class because of their superior potential for various applications. However, it is still a formidable challenge to obtain triazine-based materials with precise adjustable meso-scaled pore sizes and controllable pore structures by reported synthesis approaches. Herein, we develop a solvent polarity induced interface self-assembly strategy to construct mesoporous triazine-based carbon materials. In this method, we employ a mixed solvent system within a suitable range of polarity (0.223≤Lippert-Mataga parameter (Δf) ≤0.295) to induce valid self-assembly of skeleton precursor and surfactant. The as-prepared mesoporous triazine-based carbon materials possess uniform tunable pore sizes (8.2-14.0 nm), high surface areas and ultrahigh nitrogen content (up to 18 %). Owing to these intriguing advantages, the fabricated mesoporous triazine-based carbon materials as functionalized porous solid absorbents exhibit predominant CO2 adsorption performance and exceptional selectivity for the capture of CO2 over N2 .

18.
ChemSusChem ; 14(20): 4422-4430, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34350723

ABSTRACT

Two-dimensional transition metal carbonitrides (MXene) have demonstrated great potential in many fields. However, the serious aggregation and poor thermodynamic stability of MXene greatly hinder their applications. Here, an interface-induced self-assembly strategy to synthesize ordered mesoporous carbon/Ti3 C2 Tx heterostructures (OMCTs) was developed. In this method, the composite monomicelles formed by Pluronic F127 and low-molecular-weight phenolic resol self-assembled on the surface of Ti3 C2 Tx to prevent the restacking of Ti3 C2 Tx and maintain its thermostability. The obtained OMCTs possessed high specific surface areas (259-544 m2 g-1 ), large pore volumes (0.296-0.481 cm3 g-1 ), and excellent thermodynamic stability (up to 600 °C). Benefiting from these advantages, OMCTs serving as the electrode materials for supercapacitor exhibited superior supercapacitor performances, including high capacitance of 247 F g-1 at 0.2 A g-1 , satisfactory rate performance of 190 F g-1 at 5 A g-1 , and cyclability.

19.
Chemistry ; 27(60): 14790-14799, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34378261

ABSTRACT

Na3 V2 (PO4 )3 (NVP) has been regarded as a potential cathode material for sodium-ion batteries (SIBs) due to its excellent structural stability and rapid Na+ conductivity. However, its electrochemical performances are restricted by the large bulk structure and poor electronic conductivity. The construction of porous NVP materials is a powerful method to improve the electrochemical properties. This concept aims to provide an overview of recent progress of porous NVP materials for SIBs. Herein, the synthetic strategies and formation mechanisms of porous NVP materials as well as the relationship between the porous structures and electrochemical performances of NVP materials are reviewed. Furthermore, the challenges and prospects for the preparation of porous NVP materials in this field are outlined.

20.
Adv Sci (Weinh) ; 8(11): e2004943, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34105293

ABSTRACT

A general polymer-assisted spinodal decomposition strategy is used to prepare hierarchically porous sodium super ionic conductor (NASICON)-structured polyanion-type materials (e.g., Na3 V2 (PO4 )3 , Li3 V2 (PO4 )3 , K3 V2 (PO4 )3 , Na4 MnV(PO4 )3 , and Na2 TiV(PO4 )3 ) in a tetrahydrofuran/ethanol/H2 O synthesis system. Depending on the boiling point of solvents, the selective evaporation of the solvents induces both macrophase separation via spinodal decomposition and mesophase separation via self-assembly of inorganic precursors and amphiphilic block copolymers, leading to the formation of hierarchically porous structures. The resulting hierarchically porous Na3 V2 (PO4 )3 possessing large specific surface area (≈77 m2 g-1 ) and pore volume (≈0.272 cm3 g-1 ) shows a high specific capacity of 117.6 mAh g-1 at 0.1 C achieving the theoretical value and a long cycling life with 77% capacity retention over 1000 cycles at 5 C. This method presented here can open a facile avenue to synthesize other hierarchically porous polyanion-type materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...