Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866834

ABSTRACT

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Subject(s)
Cryoelectron Microscopy , Cryptophyta , Light-Harvesting Protein Complexes , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Cryptophyta/metabolism , Photosynthesis , Models, Molecular , Energy Transfer , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/chemistry , Chlorophyll A/metabolism , Chlorophyll A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL