Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 402: 130829, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734261

ABSTRACT

Most marine microalgae are typically cultivated in coastal areas due to challenges in inland cultivation. In this 185 days experiment, Nannochloropsis oceanica was semi-continuously cultivated inland using different photobioreactors (PBRs). The newly designed 700-liter (L) PBR exhibited tolerance to seasonal changes compared to the 150-L PBRs. The innovative in-situ oxygen release rate (ORR) measurement method results indicated that ORR was influenced by light intensity and temperature. The optimal temperature range for N. oceanica growth was 14-25 â„ƒ, demonstrated cold tolerance and lipid accumulation at low temperatures. The maximum lipid content in 700-L and 150-L PBRs was 29 % and 28 %, respectively. Based on the average biomass productivity, the price of N. oceanica was $11.89 kg-1 (or $3.35 kg-1 based on maximum biomass productivity), which is cheaper than the current market price of $20.19 kg-1. From results, smaller PBRs at the same hydro electricity price are more cost-effective.


Subject(s)
Biomass , Microalgae , Photobioreactors , Stramenopiles , Microalgae/growth & development , Microalgae/metabolism , Stramenopiles/growth & development , Stramenopiles/metabolism , Temperature , Oxygen , Light
2.
Environ Pollut ; 355: 124102, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38710362

ABSTRACT

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.


Subject(s)
Biodegradation, Environmental , Cadmium , Fertilizers , Metals, Heavy , Nitrogen , Soil Pollutants , Fertilizers/analysis , Soil Pollutants/metabolism , Nitrogen/metabolism , Cadmium/metabolism , Metals, Heavy/metabolism , Lead/metabolism , Soil/chemistry , Hypocreales/metabolism
3.
Sci Total Environ ; 937: 173141, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38761927

ABSTRACT

This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.


Subject(s)
Biofilms , Microplastics , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis
4.
BMC Microbiol ; 24(1): 181, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789935

ABSTRACT

BACKGROUND: Lignin is an intricate phenolic polymer found in plant cell walls that has tremendous potential for being converted into value-added products with the possibility of significantly increasing the economics of bio-refineries. Although lignin in nature is bio-degradable, its biocatalytic conversion is challenging due to its stable complex structure and recalcitrance. In this context, an understanding of strain's genomics, enzymes, and degradation pathways can provide a solution for breaking down lignin to unlock the full potential of lignin as a dominant valuable bioresource. A gammaproteobacterial strain AORB19 has been isolated previously from decomposed wood based on its high laccase production. This work then focused on the detailed genomic and functional characterization of this strain based on whole genome sequencing, the identification of lignin degradation products, and the strain's laccase production capabilities on various agro-industrial residues. RESULTS: Lignin degrading bacterial strain AORB19 was identified as Serratia quinivorans based on whole genome sequencing and core genome phylogeny. The strain comprised a total of 123 annotated CAZyme genes, including ten cellulases, four hemicellulases, five predicted carbohydrate esterase genes, and eight lignin-degrading enzyme genes. Strain AORB19 was also found to possess genes associated with metabolic pathways such as the ß-ketoadipate, gentisate, anthranilate, homogentisic, and phenylacetate CoA pathways. LC-UV analysis demonstrated the presence of p-hydroxybenzaldehyde and vanillin in the culture media which constitutes potent biosignatures indicating the strain's capability to degrade lignin. Finally, the study evaluated the laccase production of Serratia AORB19 grown with various industrial raw materials, with the highest activity detected on flax seed meal (257.71 U/L), followed by pea hull (230.11 U/L), canola meal (209.56 U/L), okara (187.67 U/L), and barley malt sprouts (169.27 U/L). CONCLUSIONS: The whole genome analysis of Serratia quinivorans AORB19, elucidated a repertoire of genes, pathways and enzymes vital for lignin degradation that widens the understanding of ligninolytic metabolism among bacterial lignin degraders. The LC-UV analysis of the lignin degradation products coupled with the ability of S. quinivorans AORB19 to produce laccase on diverse agro-industrial residues underscores its versatility and its potential to contribute to the economic viability of bio-refineries.


Subject(s)
Laccase , Lignin , Serratia , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Genomics , Laccase/metabolism , Laccase/genetics , Lignin/metabolism , Phylogeny , Serratia/genetics , Serratia/metabolism , Serratia/classification , Whole Genome Sequencing
5.
Bioresour Technol ; 393: 130000, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37956950

ABSTRACT

Forestry lignocellulosic waste is an important, largely untapped source of biomass for producing clean energy. In this study, a high-solids twin-screw extrusion approach is developed as a novel pretreatment method to effectively increase the biogas production rate to better fit commercial requirements. Multiple screw designs are progressively introduced with increasingly intensified mechanical shear. The experiments also looked at the impact of feed solids content and several cost-effective processing aids along with these screw designs. Various characterization methods were used to relate the physical state of the biomass based on its specific surface area and volatile fraction, to the rate of biomethane generation possible from a 14- and 31-day biomethane potential test. An increase in biomethane production over this period by up to 190% was possible with the optimal screw design compared to a benchmark sample. This is a promising finding for the industrialization of biomethane production from forestry lignocellulosic biomass.


Subject(s)
Biofuels , Forestry , Biomass , Industry , Methane
6.
Sci Total Environ ; 903: 166428, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37619727

ABSTRACT

Bioproduction is considered a promising alternative way of obtaining useful and green chemicals. However, the downstream process of biomolecules has been one of the major difficulties in upscaling the application of bioproducts due to the high purification cost. Acid precipitation is the most common method for purifying biosurfactants from the fermentation broth with high purity. However, the use of strong acids and organic solvents in solvent extraction has limited its application. Hence, in this study, a new strain of Bacillus velezensis PhCL was isolated from phenolic waste, and its production of amylase had been optimized via response surface methodology. After that, amylase and biosurfactant were purified by sequential ammonium sulfate precipitation and the result suggested that even though the purified crude biosurfactant had a lower purification fold compared to the acid precipitation, the yield was higher and both enzymes and biosurfactant also could be recovered for lowering the purification cost. Moreover, the purified amylase and crude biosurfactant were characterized and the results suggested that the purified crude biosurfactant would have a higher emulsion activity and petroleum hydrocarbon removal rate compared to traditional surfactants. This study provided another approach for purifying bioactive compounds including enzymes and biosurfactants from the same fermentation broth and further explored the potential of the crude purified biosurfactant in the bioremediation of polycyclic aromatic hydrocarbons and petroleum hydrocarbons.

7.
Biotechnol Rep (Amst) ; 39: e00809, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37583477

ABSTRACT

High throughput screening approaches can significantly speed up the identification of novel enzymes from natural microbial consortiums. A two-step high throughput screening process was proposed and explored to screen lignin-degrading microorganisms. By employing this modified culture enrichment method and screening based on enzyme activity, a total of 82 bacterial and 46 fungal strains were isolated from fifty decayed wood samples (100 liquid cultures) collected from the banks of the Ottawa River in Canada. Among them, ten bacterial and five fungal strains were selected and identified based on their high laccase activities by 16S rDNA and ITS gene sequencing, respectively. The study identified bacterial strains from various genera including Serratia, Enterobacter, Raoultella, and Bacillus, along with fungal counterparts including Mucor, Trametes, Conifera and Aspergillus. Moreover, Aspergillus sydowii (AORF21), Mucor sp. (AORF43), Trametes versicolor (AORF3) and Enterobacter sp. (AORB55) exhibited xylanase and ß- glucanase activities in addition to laccase production. The proposed approach allowed for the quick identification of promising consortia and enhanced the chance of isolating desired strains based on desired enzyme activities. This method is not limited to lignocellulose and lignin-degrading microorganisms but can be applied to identify novel microbial strains and enzymes from different natural samples.

8.
Microb Physiol ; 33(1): 36-48, 2023.
Article in English | MEDLINE | ID: mdl-36944321

ABSTRACT

Soil bacteria participate in self-immobilization processes for survival, persistence, and production of virulence factors in some niches or hosts through their capacities for autoaggregation, cell surface hydrophobicity, biofilm formation, and antibiotic and heavy metal resistance. This study investigated potential virulence, antibiotic and heavy metal resistance, solvent adhesion, and biofilm-forming capabilities of six cellulolytic bacteria isolated from soil samples: Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Strains were subjected to phenotypic methods, including heavy metal and antibiotic susceptibility and virulence factors (protease, lipase, capsule production, autoaggregation, hydrophobicity, and biofilm formation). The effect of ciprofloxacin was also investigated on bacterial susceptibility over time, cell membrane, and biofilm formation. Strains MKAL2, MKAL5, and MKAL6 exhibited protease and lipase activities, while only MKAL6 produced capsules. All strains were capable of aggregating, forming biofilm, and adhering to solvents. Strains tolerated high amounts of chromium, lead, zinc, nickel, and manganese and were resistant to lincomycin. Ciprofloxacin exhibited bactericidal activity against these strains. Although the phenotypic evaluation of virulence factors of bacteria can indicate their pathogenic nature, an in-depth genetic study of virulence, antibiotic and heavy metal resistance genes is required.


Subject(s)
Anti-Bacterial Agents , Metals, Heavy , Virulence , Anti-Bacterial Agents/pharmacology , Soil , Metals, Heavy/toxicity , Metals, Heavy/analysis , Metals, Heavy/metabolism , Bacteria/genetics , Biofilms , Virulence Factors/genetics , Virulence Factors/pharmacology , Ciprofloxacin/pharmacology , Peptide Hydrolases/pharmacology , Lipase/pharmacology
9.
Arch Microbiol ; 205(4): 130, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36947219

ABSTRACT

The demand for enzymes is increasing continuously due to their applications in various avenues. The pectin-hydrolyzing bacteria, Cellulomonas sp. and Bacillus sp., isolated from forest soil have the potential to produce industrially important enzymes (pectinase, PGase, Cellulase, and xylanase). However, these bacteria have different optimal cultural conditions for pectinase production. The optimal cultural conditions for Cellulomonas sp. were room temperature (25-26℃), pH 7, 1% inoculum volume, and 1.5% citrus pectin with 8.82 ± 0.92 U/mL pectinase activity. And Bacillus sp. illustrated the highest pectinase activity (12.35 ± 0.72 U/mL) at room temperature, pH 10, 1% inoculum volume, and 1.5% pectin concentration. Among the different agro-wastes, the orange peel was found to be the best substrate for pectinase, PGase, and cellulase activity whereas barley straw for xylanase activity. Further, Cellulomonas sp. and Bacillus sp. illustrated higher pectinase activity from commercial pectin compared to orange peel showing their preference for commercial citrus pectin. In addition, the optimization by the Box-Behnken design increased pectinase activity for Cellulomonas sp., while a noticeable increase in activity was not observed in Bacillus sp. Besides, all the agro-wastes exploited in this study can be used for pectinase, PGase, and xylanase production but not cellulase. The study revealed that each bacteria has its specific optimal conditions and there is a variation in the capacity of utilizing the various lignocellulosic biomass.


Subject(s)
Bacillus , Cellulomonas , Polygalacturonase , Biomass , Pectins
10.
Bull Environ Contam Toxicol ; 110(2): 50, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719501

ABSTRACT

Surfactant remediation has an excellent record of removing polycyclic aromatic hydrocarbons (PAHs). By using simulation experiments, we investigated the properties and mechanism of a surfactant-containing foam and its effect on PAH removal. Our results suggest that the optimal conditions by foam washing are as follows: 40 mmol·L-1 of rhamnolipid and fulvic acid mixed surfactant (V: V = 3:1), with 70:3 and 20:3 foam gas-liquid ratio for naphthalene and phenanthrene, respectively (pH 6, 50°C, 2 h). Under the optimal conditions, 60.1% and 56.68% removal efficiencies were achieved against naphthalene and phenanthrene from contaminated soil, respectively. These values were lower than those from the simulated media (76.69% and 70.43% for naphthalene and phenanthrene, respectively). The strong PAH adsorption on the soil particles antagonized volatilization, the key PAH removal mechanism by foam leaching. Therefore, this research provides relevant information for using surfactant foam to remediate heavily PAH-contaminated soils.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Surface-Active Agents/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Naphthalenes , Soil/chemistry
11.
Curr Microbiol ; 80(2): 71, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622468

ABSTRACT

Modern society has a great challenge to decrease waste and minimize the adverse effects of wastes on the economy, environment, and individual health. Thus, this study focuses on the use of eight agro-wastes (banana peel, barley straw, canola straw, pomegranate peel, orange peel, pumpkin pulp+seeds, maple leaf, and brewer's spent grains) by a novel bacterium (Streptomyces thermocarboxydus) for enzymes production. Further, the study explored the subsequent degradation of those wastes by the bacterium. This bacterium was isolated from forest soil and identified as Streptomyces thermocarboxydus by 16S rRNA sequence analysis. The biodegrading capability of S. thermocarboxydus was determined by observing the clear zone around the colony cultured on the agar plate containing the different biomasses as sole carbon sources and calculating the substrate degradation ratios. Furthermore, scanning electron microscopy images of eight agro-wastes before and after bacterial treatment and weight loss of agro-wastes revealed the bacterium degraded the biomasses. The different trends of enzyme activities were observed for various wastes, and the maximum activity depended on the type of agro-wastes. Overall, S. thermocarboxydus was found to be a potential candidate for pectinase and xylanase production. The enzyme production varies with the concentration of the biomasses.


Subject(s)
Fruit , Streptomyces , Biomass , RNA, Ribosomal, 16S/genetics , Streptomyces/genetics
12.
Microb Physiol ; 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36417846

ABSTRACT

The cultural parameters of Streptomyces sp. for pectinase production were optimized using the Box-Behnken design. The maximum pectinase production was obtained after 58 hours at 35℃ and pH 7 upon submerged fermentation in yeast extract-containing media. The enzymes were partially purified with acetone precipitation and the analysis by SDS-PAGE and zymogram revealed that Streptomyces sp. produced two pectinases with molecular weights of about 25 and 75 kDa. The pectinase activity was detected in a wide range of temperatures (30℃ to 80℃) and pH (3 to 9) with maximum pectinase activities observed at 70℃ and pHs 5 and 9. The enzymes retained about 30 to 40% of their activities even after incubating the enzyme at different temperatures for 120 mins. The pectinase activities of Streptomyces sp. were enhanced in the media containing 1.5% pectin, 1% casein as a nitrogen source, 0.5 mM MgSO4, and 5 mM NaCl. Further, the addition of Tween-20, amino acids, and vitamins to the media also enhanced the pectinase activity. Moreover, the bacterium illustrated the ability to decolorize crystal violet dye efficiently. The decolorization rate ranged from 39.29 to 53.75% showing the highest bacterial decolorization in the media containing 2mg/mL crystal violet at 144 hours. Therefore, the bacterium has the potential in treating wastewater produced by industries like textile industries.

13.
Front Microbiol ; 13: 1049692, 2022.
Article in English | MEDLINE | ID: mdl-36386650

ABSTRACT

The present study identified the pectinase-producing bacterium isolated from the contaminated broth as Bacillus sp. on 16S rDNA sequence analysis. The bacterium illustrated water-like droplets on the colony grown on the Sabouraud dextrose agar plate. It also exhibited multi-enzymes activities, such as pectinase, polygalacturonase, xylanase, and cellulase by using various agro-wastes as low-cost substrates. The orange peel was observed to be the best substrate among the agro-wastes used for maximum multi-enzymes (pectinase, polygalacturonase, xylanase, and cellulase). However, the bacterium demonstrated its capability to produce different enzymes according to the different substrates/agro-wastes used. The Plackett-Burman design was used to determine the essential influencing factors, while the Box Behnken design response surface methodology was for optimizing cultural conditions. At their optimal conditions (40°C incubation temperature, 24 h of incubation period, 1% w/v orange peel, and 2% v/v inoculum volume), the bacterium exhibited the maximum pectinase (9.49 ± 1.25 U/ml) and xylanase (16.27 ± 0.52 U/ml) activities. Furthermore, the study explored the ability of the bacterium to produce bacterial lipids and observed about 25% bacterial lipid content on a dry weight basis. Therefore, the bacterium is a good candidate for producing important multi-enzymes and subsequent agro-waste degradation controlling the environment, and facilitating waste management. Also, the bacterium can be a potential feedstock in producing renewable biofuel.

14.
Front Microbiol ; 13: 878360, 2022.
Article in English | MEDLINE | ID: mdl-35923404

ABSTRACT

Natural biodegradation processes hold promises for the conversion of agro-industrial lignocellulosic biomaterials into biofuels and fine chemicals through lignin-degrading enzymes. The high cost and low stability of these enzymes remain a significant challenge to economic lignocellulosic biomass conversion. Wood-degrading microorganisms are a great source for novel enzyme discoveries. In this study, the decomposed wood samples were screened, and a promising γ-proteobacterial strain that naturally secreted a significant amount of laccase enzyme was isolated and identified as Serratia proteamaculans AORB19 based on its phenotypic and genotypic characteristics. The laccase activities in culture medium of strain AORB19 were confirmed both qualitatively and quantitatively. Significant cultural parameters for laccase production under submerged conditions were identified following a one-factor-at-a-time (OFAT) methodology: temperature 30°C, pH 9, yeast extract (2 g/l), Li+, Cu2+, Ca2+, and Mn2+ (0.5 mM), and acetone (5%). Under the selected conditions, a 6-fold increase (73.3 U/L) in laccase production was achieved when compared with the initial culturing conditions (12.18 U/L). Furthermore, laccase production was enhanced under alkaline and mesophilic growth conditions in the presence of metal ions and organic solvents. The results of the study suggest the promising potential of the identified strain and its enzymes in the valorization of lignocellulosic wastes. Further optimization of culturing conditions to enhance the AORB19 strain laccase secretion, identification and characterization of the purified enzyme, and heterologous expression of the specific enzyme may lead to practical industrial and environmental applications.

15.
Appl Biochem Biotechnol ; 194(11): 5060-5082, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35687308

ABSTRACT

The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.


Subject(s)
Bacillus , Cellulase , Cellulases , Cellulase/chemistry , Cellulose , Soil , Carboxymethylcellulose Sodium , Agar , Congo Red , Nitrogen , Temperature , Carbon , Glucose , Sucrose , Gelatinases , Hydrogen-Ion Concentration
16.
J Biotechnol ; 344: 50-56, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34973970

ABSTRACT

Bioflocculant may be a promising bioactivator for heavy metal removal duo to its eco-friendly properties and remarkable ability to adsorb heavy metals. In this study, bioflocculant production from a bacterium, Pseudomonas sp. GO2, was optimized and its removal efficiency for two heavy metal ions was evaluated. Results demonstrated that the maximal flocculation efficiency was achieved with concentration levels of 5 g/L glucose, 3 g/L casein, and 5 g/L NaCl, with an initial pH of 9.0, and a fermentation time of 48 h. Bioflocculant produced by GO2 had a stronger removal efficiency for Cd2+ than that of Pb2+, with highest removal efficiencies of 85.38% and 80.87%, respectively. The adsorption process was mainly dependent on the monolayer and chemisorption based on the adsorption isotherm and kinetic models. This study demonstrated that bioflocculant produced by the GO2 strain has the potential to be used in heavy metal treatment from industrial wastewater.


Subject(s)
Metals, Heavy , Pseudomonas , Adsorption , Flocculation , Hydrogen-Ion Concentration , Wastewater
17.
Bioresour Bioprocess ; 9(1): 63, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-38647751

ABSTRACT

Microbial weathering processes can significantly promote soil properties and reduce rock-to-soil ratio. Some soil-inhabiting bacteria exhibit efficient rock-dissolution abilities by releasing organic acids and other chemical elements from the silicate rocks. However, our understanding of the molecular mechanisms involved during bacterial rock-dissolution is still limited. In this study, we performed silicate rock-dissolution experiments on a Pseudomonas sp. NLX-4 strain isolated from an over-exploited mining site. The results revealed that Pseudomonas sp. NLX-4 strain efficiently accelerates the dissolution of silicate rocks by secreting amino acids, exopolysaccharides, and organic acids. Through employing genome and transcriptome sequencing (RNA-seq), we identified the major regulatory genes. Specifically, 15 differentially expressed genes (DEGs) encoding for siderophore transport, EPS and amino acids synthesis, organic acids metabolism, and bacterial resistance to adverse environmental conditions were highly up-regulated in silicate rock cultures of NLX-4 strain. Our study reports a potential bacterial based approach for improving the ecological restoration of over-exploited rock mining sites.

18.
Bioresour Bioprocess ; 8(1): 92, 2021.
Article in English | MEDLINE | ID: mdl-34722121

ABSTRACT

The biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses depends exclusively on the effective pretreatment process. Herein, we report a significant enhancement of enzymatic saccharification obtained with corn stover using a bacterial strain Bacillus sp. P3. The hemicellulose removal from corn stover by the strain Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that an alkaline-resistant xylanase as well as other enzymes produced by Bacillus sp. P3 in fermentation broth led to a substantially enhanced hemicellulose removal rate from corn stover within pH 9.36-9.68. However, after a 20-day pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was decreased by 35%. After 72 h of saccharification using 20 U/g of commercial cellulase, the yield of reducing sugar released from 20-day pretreated corn stover was increased by 56% in comparison to the untreated corn stover. Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic hydrolysis process of industrial bioenergy productions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40643-021-00445-8.

19.
Appl Microbiol Biotechnol ; 105(24): 9069-9087, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34846574

ABSTRACT

Pectinase, a group of pectin degrading enzymes, is one of the most influential industrial enzymes, helpful in producing a wide variety of products with good qualities. These enzymes are biocatalysts and are highly specific, non-toxic, sustainable, and eco-friendly. Consequently, both pectin and pectinase are crucially essential biomolecules with extensive applicatory perception in the biotechnological sector. The market demand and application of pectinases in new sectors are continuously increasing. However, due to the high cost of the substrate used for the growth of microbes, the production of pectinase using microorganisms is limited. Therefore, low-cost or no-cost substrates, such as various agricultural biomasses, are emphasized in producing pectinases. The importance and implications of pectinases are rising in diverse areas, including bioethanol production, extraction of DNA, and protoplast isolation from a plant. Therefore, this review briefly describes the structure of pectin, types and source of pectinases, substrates and strategies used for pectinases production, and emphasizes diverse potential applications of pectinases. The review also has included a list of pectinases producing microbes and alternative substrates for commercial production of pectinase applicable in pectinase-based industrial technology.Key points• Pectinase applications are continuously expanding.• Organic wastes can be used as low-cost sources of pectin.• Utilization of wastes helps to reduce pollution.


Subject(s)
Pectins , Polygalacturonase , Agriculture , Biomass , Biotechnology
20.
Gene ; 804: 145871, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34363887

ABSTRACT

Chrysotila dentata is an ecologically important marine alga contributing to the coccolith formation. In this study, a complete chloroplast (cp DNA) genome of Chrysotila dentata was sequenced by using Illumina Hiseq and was analyzed with the help of a bioinformatics tool CPGAVAS2. The circular chloroplast genome of Chrysotila dentata has a size of 109,017 bp with two inverted repeats (IRs) regions (4513 bp each) which is a common feature in most land plants and algal species. The Chrysotila dentata cp genome consists of 61 identified protein-coding genes, 30 tRNA genes and 6 rRNAs with 21 microsatellites. The phylogenetic relationship with other select algal species revealed a close phylogeny of Chrysotila dentata with Phaeocystis antarctica. This is the first report of the cp genome analysis of genus Chrysotila and the results from this study will be helpful for understanding the genetic structure and function of chloroplast in other species of Chrysotila.


Subject(s)
Chloroplasts/genetics , Haptophyta/genetics , Computational Biology/methods , Evolution, Molecular , Genes, Plant , Genome , High-Throughput Nucleotide Sequencing/methods , Inverted Repeat Sequences/genetics , Microsatellite Repeats/genetics , Phylogeny , RNA, Ribosomal/genetics , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...