Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Biol ; 221(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34813648

ABSTRACT

Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110-CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110-CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.


Subject(s)
Cell Cycle Proteins/metabolism , Centrioles/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism , Organogenesis , Phosphoproteins/metabolism , Ubiquitin/metabolism , Animals , Cell Line , Humans , Mice , Multiprotein Complexes , RNA-Binding Proteins/metabolism , Substrate Specificity , Ubiquitination , Zebrafish
2.
Nat Commun ; 9(1): 5277, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30538248

ABSTRACT

Defective ciliogenesis causes human developmental diseases termed ciliopathies. Microtubule (MT) asters originating from centrosomes in mitosis ensure the fidelity of cell division by positioning the spindle apparatus. However, the function of microtubule asters in interphase remains largely unknown. Here, we reveal an essential role of MT asters in transition zone (TZ) assembly during ciliogenesis. We demonstrate that the centrosome protein FSD1, whose biological function is largely unknown, anchors MT asters to interphase centrosomes by binding to microtubules. FSD1 knockdown causes defective ciliogenesis and affects embryonic development in vertebrates. We further show that disruption of MT aster anchorage by depleting FSD1 or other known anchoring proteins delocalizes the TZ assembly factor Cep290 from centriolar satellites, and causes TZ assembly defects. Thus, our study establishes FSD1 as a MT aster anchorage protein and reveals an important function of MT asters anchored by FSD1 in TZ assembly during ciliogenesis.


Subject(s)
Axoneme/metabolism , Cilia/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , Animals , Axoneme/genetics , Centrosome/metabolism , Cilia/genetics , Humans , Mitosis , Nerve Tissue Proteins/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
3.
BMC Cancer ; 18(1): 259, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29510676

ABSTRACT

BACKGROUND: Non-small-cell lung cancer (NSCLC) is characterized by abnormalities of numerous signaling proteins that play pivotal roles in cancer development and progression. Many of these proteins have been reported to be correlated with clinical outcomes of NSCLC. However, none of them could provide adequate accuracy of prognosis prediction in clinical application. METHODS: A total of 384 resected NSCLC specimens from two hospitals in Beijing (BJ) and Chongqing (CQ) were collected. Using immunohistochemistry (IHC) staining on stored formalin-fixed paraffin-embedded (FFPE) surgical samples, we examined the expression levels of 75 critical proteins on BJ samples. Random forest algorithm (RFA) and support vector machines (SVM) computation were applied to identify protein signatures on 2/3 randomly assigned BJ samples. The identified signatures were tested on the remaining BJ samples, and were further validated with CQ independent cohort. RESULTS: A 6-protein signature for adenocarcinoma (ADC) and a 5-protein signature for squamous cell carcinoma (SCC) were identified from training sets and tested in testing sets. In independent validation with CQ cohort, patients can also be divided into high- and low-risk groups with significantly different median overall survivals by Kaplan-Meier analysis, both in ADC (31 months vs. 87 months, HR 2.81; P <  0.001) and SCC patients (27 months vs. not reached, HR 9.97; P <  0.001). Cox regression analysis showed that both signatures are independent prognostic indicators and outperformed TNM staging (ADC: adjusted HR 3.07 vs. 2.43, SCC: adjusted HR 7.84 vs. 2.24). Particularly, we found that only the ADC patients in high-risk group significantly benefited from adjuvant chemotherapy (P = 0.018). CONCLUSIONS: Both ADC and SCC protein signatures could effectively stratify the prognosis of NSCLC patients, and may support patient selection for adjuvant chemotherapy.


Subject(s)
Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Lung Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Female , Follow-Up Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Male , Middle Aged , Prognosis , Prospective Studies , Signal Transduction , Survival Rate , Tissue Array Analysis
4.
FEBS Lett ; 589(19 Pt B): 2850-8, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26299341

ABSTRACT

Most of NF-κB (nuclear factor kappa B) signaling molecules have various types of post-translational modifications. In this study, we focused on ubiquitination and designed a siRNA library including most ubiquitin-binding domains. With this library, we identified several candidate regulators of canonical NF-κB pathway, including RNF4. Overexpression of RNF4 impaired NF-κB activation in a dose-dependent manner, whereas RNF4 knockdown potentiated NF-κB activation. We showed that RNF4 interacts with the TAK1-TAB2-TAB3 complex, but not TAB1. Further, we found that RNF4 specifically down-regulated TAB2 through a lysosomal pathway, and knockdown of RNF4 impaired endogenous TAB2 degradation. Therefore, our findings will provide new insights into the negative regulation of NF-κB signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Down-Regulation , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Down-Regulation/drug effects , Gene Knockdown Techniques , Humans , Interleukin-1beta/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , MAP Kinase Kinase Kinases/metabolism , Mice , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Protein Structure, Tertiary , Proteolysis/drug effects , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Transcription Factors/chemistry , Transcription Factors/deficiency , Transcription Factors/genetics , Ubiquitin/metabolism
5.
J Biol Chem ; 290(16): 10395-405, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25681446

ABSTRACT

Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Gene Expression Regulation , NF-kappa B/genetics , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Genes, Reporter , HEK293 Cells , HeLa Cells , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Luciferases/genetics , Luciferases/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Proteolysis/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Small Molecule Libraries , Tumor Necrosis Factor-alpha/pharmacology , Valosin Containing Protein
SELECTION OF CITATIONS
SEARCH DETAIL