Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 174: 116468, 2024 May.
Article in English | MEDLINE | ID: mdl-38518603

ABSTRACT

The non-neuronal and non-muscular effects of botulinum toxin type A (BTXA) on scar reduction has been discovered. This study was designed to investigate the effects of BTXA on macrophages polarization during the early stage of skin repair. A skin defect model was established on the dorsal skin of SD rats. BTXA was intracutaneous injected into the edge of wound immediately as the model was established. Histological examinations were performed on scar samples. Raw 264.7 was selected as the cell model of recruited circulating macrophages, and was induced for M1 polarization by LPS. Identify the signaling pathways that primarily regulated M1 polarization and respond to BTXA treatment. Application of BTXA at early stage of injury significantly reduced the scar diameter without delaying wound closure. BTXA treatment improved fiber proliferation and arrangement, and inhibited angiogenesis in scar granular tissue. The number of M1 macrophages and the levels of pro-inflammation were decreased after treated with BTXA in scar tissues. LPS activated JAK2/STAT1 and IκB/NFκB pathways were downregulated by BTXA, as well as LPS induced M1 polarization. At early stage of skin wound healing, injection of BTXA effectively reduced the number of M1 macrophages and the levels of pro-inflammatory mediators which contributes to scar alleviation. BTXA resisted the M1 polarization of macrophages induced by LPS via deactivating the JAK2/STAT1 and IκB/NFκB pathways.


Subject(s)
Botulinum Toxins, Type A , Cicatrix , Janus Kinase 2 , Macrophages , NF-kappa B , Rats, Sprague-Dawley , STAT1 Transcription Factor , Signal Transduction , Skin , Wound Healing , Animals , STAT1 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Wound Healing/drug effects , NF-kappa B/metabolism , Macrophages/drug effects , Macrophages/metabolism , Botulinum Toxins, Type A/pharmacology , Mice , RAW 264.7 Cells , Cicatrix/pathology , Cicatrix/drug therapy , Cicatrix/metabolism , Cicatrix/prevention & control , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Skin/metabolism , Rats , Male , I-kappa B Proteins/metabolism , Lipopolysaccharides/pharmacology
2.
J Oncol ; 2023: 8306514, 2023.
Article in English | MEDLINE | ID: mdl-36814557

ABSTRACT

Cisplatin plus 5-fluorouracil (PF) is used as the standard neoadjuvant chemotherapy (also called preoperative chemotherapy) in the treatment of tongue squamous cell carcinoma (TSCC). Although PF chemotherapy reduces the distant metastasis of TSCC, the five-year survival rate has not significantly improved. In recent years, components considered in traditional Chinese medicine have been researched as adjuvant drugs for radiotherapy and chemotherapy. Plumbagin (PB) is a quinone component isolated from Plumbago zeylanica L. Notably, PB demonstrates numerous anticancer properties. In order to examine the chemosensitization effect of PB on PF and its associated mechanisms, in vitro experiments using TSCC Cal27 and cisplatin (CDDP)-resistant Cal27/CDDP cells were carried out in the present study, and the results were subsequently verified using nude mice xenografts. Results of the present study demonstrated that PB enhanced the anticancer effects of PF on the proliferation, migration, and invasion of Cal27 and Cal27/CDDP cells. Cell cycle assays demonstrated that both Cal27 and Cal27/CDDP cells were arrested in the S phase following the combined treatment of PF and PB. Moreover, the PF and PB combination group induced higher levels of apoptosis in Cal27 and Cal27/CDDP cells compared with the group treated with PF alone. In addition, the results of the present study demonstrated that combined PB and PF inhibited the PI3K/AKT/mTOR/p70S6K pathway in TSCC cells. Moreover, the weight and volumes of tumors in nude mice were reduced following treatment with a combination of PF and PB. Results of the present study also demonstrated that the expression levels of Ki67 were markedly reduced in the combined treatment group compared with the group treated with PF alone. In summary, the results of the present study demonstrated that PB enhanced the PF sensitivity of TSCC through induction of S-phase arrest and apoptosis via the PI3K/AKT/mTOR/p70S6K pathway.

3.
Colloids Surf B Biointerfaces ; 210: 112229, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34875470

ABSTRACT

Porous scaffolds have long been regarded as optimal substitute for bone tissue repairing. In order to explore the influence of unit cell structure and inherent material characteristics on the porous scaffolds in terms of mechanical and biological performance, selective laser melting (SLM) technology was used to fabricate porous tantalum (Ta) and titanium alloy (Ti6Al4V) with diamond (Di) or rhombic dodecahedron (Do) unit cell structure. The mechanical strength of all the porous scaffolds could match that of trabecular bone, while the biological performance of each scaffold was diverse from each other. Moreover, the ILK/ERK1/2/Runx2 signaling pathway had been verified to be involved in the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) cultured on those porous scaffolds. Unit cell structure and material characteristics of the porous Ta and Ti6Al4V scaffolds can synergistically modulate this axis and further impact on the osteogenic effects. Our results hence illustrate that porous Ta scaffold with diamond unit cell structure possesses excellent osteogenic effects and moderate mechanical strength and porous Ti6Al4V scaffold with rhombic dodecahedron unit cell structure has the highest mechanical strength and moderate osteogenic effects. Both porous Ta and Ti6Al4V can be applied in different settings requiring either better biological performance or higher mechanical demand.


Subject(s)
Osteogenesis , Tantalum , Alloys/pharmacology , Animals , Porosity , Rats , Tissue Scaffolds , Titanium/pharmacology
4.
J Oncol ; 2021: 8239984, 2021.
Article in English | MEDLINE | ID: mdl-34484337

ABSTRACT

This study was designed to investigate whether plumbagin (PL) could sensitize ionizing radiation (IR) in tongue squamous cell carcinoma (TSCC) cells and its possible mechanisms. Cell proliferation and combination index analysis was based on MTT and colony formation assay. Flow cytometry was applied to analyze the cell cycle distribution and apoptosis after the treatment of PL and/or IR. RT-PCR was used to examine the gene expression level of ataxia telangiegatasiata muted (ATM) and nuclear factor kappa beta (NF-κB) after various treatment groups. Western blot was used to examine the protein level of ATM and NF-κB as well as their phosphorylation level. PL enhances the cytotoxicity of IR in TSCC cells. Combination index was <1 which represents a synergistic effect. Combined PL and IR promoted G2/M arrest and apoptosis which could be reversed by ATM activator chloroquine phosphate. ATM and NF-κB were both inhibited by PL and IR combination. PL can efficiently enhance the radiosensitivity of TSCC cells by inducing G2/M arrest and apoptosis via downregulating ATM.

5.
Materials (Basel) ; 14(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070153

ABSTRACT

Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.

6.
Int J Biochem Cell Biol ; 122: 105732, 2020 05.
Article in English | MEDLINE | ID: mdl-32097729

ABSTRACT

Cisplatin is one of the most widely used anticancer agents for patients with tongue squamous cell carcinoma (TSCC), but its efficacy is limited by chemoresistance. Accumulated evidence has demonstrated that reactive oxygen species (ROS) plays a critical role in multiple tumor chemotherapy resistance. In the present study, we aimed to investigate the role of ROS in cisplatin resistance of TSCC and explore its underlying molecular mechanism in vitro. Our results showed that pre-treatment with ROS scavenger N-acetylcysteine reduced cisplatin-induced cytotoxicity, autophagy, and apoptosis in TSCC cells. Down-regulation of intracellular ROS attenuated apoptosis and autophagy of TSCC cisplatin-resistant CAL27/CDDP cells by reversing the inhibition of p38MAPK/mTOR pathway. Taken together, these findings suggest that down-regulation of intracellular ROS reduces the cytotoxicity of cisplatin by inhibiting apoptosis and autophagy in TSCC cells involving p38MAPK/mTOR mediated pathway. Low intracellular ROS levels may be one of the main mechanisms of cisplatin resistance in TSCC.


Subject(s)
Cisplatin/pharmacology , Reactive Oxygen Species/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Tongue Neoplasms/drug therapy , Tongue Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Down-Regulation , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Survival Rate , Tongue Neoplasms/pathology
7.
Oncol Lett ; 12(4): 2835-2839, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27698867

ABSTRACT

The expression of the long non-coding RNA (lncRNA) H19 is associated with proliferation in tumors. In order to investigate whether H19 may additionally mediate the proliferation of fibroblasts in human keloid disease, the present study collected samples from 24 subjects, including 8 with keloids, 8 with normal scars and 8 normal skin controls. Reverse transcription-polymerase chain reaction revealed that H19 levels were markedly increased in human keloids compared with normal scars and normal skin controls (P=0.017). In order to identify a potential role for H19 in the proliferative activity of human keloid fibroblasts, small interfering (si)RNA-mediated silencing experiments were performed. H19 siRNA treatment markedly inhibited the proliferation of keloid fibroblasts, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (P=0.008). In order to identify the signaling mediators that are regulated by H19 in keloid fibroblasts, the expression levels of mammalian target of rapamycin (mTOR) and vascular endothelial growth factor (VEGF) were examined using western blotting. The results confirmed that knockdown of H19 inhibited mTOR and VEGF expression. In summary, the results indicate that H19 may be associated with increased proliferative activity of keloid fibroblasts, which may be mediated by mTOR and VEGF.

8.
Int J Mol Sci ; 17(7)2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27367670

ABSTRACT

The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA ("Orthologous MAtrix") Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery.


Subject(s)
Computational Biology/methods , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Drug Discovery , Humans , Structure-Activity Relationship
9.
Clin Exp Pharmacol Physiol ; 43(8): 723-37, 2016 08.
Article in English | MEDLINE | ID: mdl-27097837

ABSTRACT

Chemotherapy is one of the prevailing methods used to treat malignant tumours, but the outcome and prognosis of tumour patients are not optimistic. Cancer cells gradually generate resistance to almost all chemotherapeutic drugs via a variety of distinct mechanisms and pathways. Chemotherapeutic resistance, either intrinsic or acquired, is caused and sustained by reduced drug accumulation and increased drug export, alterations in drug targets and signalling transduction molecules, increased repair of drug-induced DNA damage, and evasion of apoptosis. In order to better understand the mechanisms of chemoresistance, this review highlights our current knowledge of the role of altered drug metabolism and transport and deregulation of apoptosis and autophagy in the development of tumour chemoresistance. Reduced intracellular activation of prodrugs (e.g. thiotepa and tegafur) or enhanced drug inactivation by Phase I and II enzymes contributes to the development of chemoresistance. Both primary and acquired resistance can be caused by alterations in the transport of anticancer drugs which is mediated by a variety of drug transporters such as P-glycoprotein (P-gp), multidrug resistance associated proteins, and breast cancer resistance protein. Presently there is a line of evidence indicating that deregulation of programmed cell death including apoptosis and autophagy is also an important mechanism for tumour resistance to anticancer drugs. Reversal of chemoresistance is likely via pharmacological and biological approaches. Further studies are warranted to grasp the full picture of how each type of cancer cells develop resistance to anticancer drugs and to identify novel strategies to overcome it.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/metabolism , Drug Resistance, Neoplasm/physiology , Humans , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasms/genetics , Signal Transduction/drug effects , Signal Transduction/physiology
10.
Drug Des Devel Ther ; 9: 5511-51, 2015.
Article in English | MEDLINE | ID: mdl-26491260

ABSTRACT

Tongue squamous cell carcinoma (TSCC) is the most common malignancy in oral and maxillofacial tumors with highly metastatic characteristics. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone; PLB), a natural naphthoquinone derived from the roots of Plumbaginaceae plants, exhibits various bioactivities, including anticancer effects. However, the potential molecular targets and underlying mechanisms of PLB in the treatment of TSCC remain elusive. This study employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic approach to investigate the molecular interactome of PLB in human TSCC cell line SCC25 and elucidate the molecular mechanisms. The proteomic data indicated that PLB inhibited cell proliferation, activated death receptor-mediated apoptotic pathway, remodeled epithelial adherens junctions pathway, and manipulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response signaling pathway in SCC25 cells with the involvement of a number of key functional proteins. Furthermore, we verified these protein targets using Western blotting assay. The verification results showed that PLB markedly induced cell cycle arrest at G2/M phase and extrinsic apoptosis, and inhibited epithelial to mesenchymal transition (EMT) and stemness in SCC25 cells. Of note, N-acetyl-l-cysteine (NAC) and l-glutathione (GSH) abolished the effects of PLB on cell cycle arrest, apoptosis induction, EMT inhibition, and stemness attenuation in SCC25 cells. Importantly, PLB suppressed the translocation of Nrf2 from cytosol to nucleus, resulting in an inhibition in the expression of downstream targets. Taken together, these results suggest that PLB may act as a promising anticancer compound via inhibiting Nrf2-mediated oxidative stress signaling pathway in SCC25 cells. This study provides a clue to fully identify the molecular targets and decipher the underlying mechanisms of PLB in the treatment of TSCC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Head and Neck Neoplasms/drug therapy , NF-E2-Related Factor 2/antagonists & inhibitors , Naphthoquinones/pharmacology , Neoplastic Stem Cells/drug effects , Signal Transduction/drug effects , Tongue Neoplasms/drug therapy , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , G2 Phase Cell Cycle Checkpoints/drug effects , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , NF-E2-Related Factor 2/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oxidative Stress/drug effects , Protein Interaction Maps , Protein Transport , Proteomics/methods , Squamous Cell Carcinoma of Head and Neck , Time Factors , Tongue Neoplasms/metabolism , Tongue Neoplasms/pathology
11.
Int J Nanomedicine ; 10: 4717-30, 2015.
Article in English | MEDLINE | ID: mdl-26251594

ABSTRACT

Breast cancer is a leading killer of women worldwide. Cyclodextrin-based estrogen receptor-targeting drug-delivery systems represent a promising direction in cancer therapy but have rarely been investigated. To seek new targeting therapies for membrane estrogen receptor-positive breast cancer, an estrogen-anchored cyclodextrin encapsulating a doxorubicin derivative Ada-DOX (CDE1-Ada-DOX) has been synthesized and evaluated in human breast cancer MCF-7 cells. First, we synthesized estrone-conjugated cyclodextrin (CDE1), which formed the complex CDE1-Ada-DOX via molecular recognition with the derivative adamantane-doxorubicin (Ada-DOX) (Kd =1,617 M(-1)). The structure of the targeting vector CDE1 was fully characterized using (1)H- and (13)C-nuclear magnetic resonance, mass spectrometry, and electron microscopy. CDE1-Ada-DOX showed two-phase drug-release kinetics with much slower release than Ada-DOX. The fluorescence polarization analysis reveals that CDE1-Ada-DOX binds to recombinant human estrogen receptor α fragments with a Kd of 0.027 µM. Competition assay of the drug complex with estrogen ligands demonstrated that estrone and tamoxifen competed with CDE1-Ada-DOX for membrane estrogen receptor binding in MCF-7 cells. Intermolecular self-assembly of CDE1 molecules were observed, showing tail-in-bucket and wire-like structures confirmed by transmission electronic microscopy. CDE1-Ada-DOX had an unexpected lower drug uptake (when the host-guest ratio was >1) than non-targeting drugs in MCF-7 cells due to ensconced ligands in cyclodextrins cavities resulting from the intermolecular self-assembly. The uptake of CDE1-Ada-DOX was significantly increased when the host-guest ratio was adjusted to be less than half at the concentration of CDE1 over 5 µM due to the release of the estrone residues. CDE1 elicited rapid activation of mitogen-activated protein kinases (p44/42 MAPK, Erk1/2) in minutes through phosphorylation of Thr202/Tyr204 in MCF-7 cells. These results demonstrate a targeted therapeutics delivery of CDE1-Ada-DOX to breast cancer cells in a controlled manner and that the drug vector CDE1 can potentially be employed as a molecular tool to differentiate nongenomic from genomic mechanism.


Subject(s)
Antineoplastic Agents , Breast Neoplasms/metabolism , Cyclodextrins , Drug Delivery Systems , Estrogens , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cyclodextrins/chemistry , Cyclodextrins/pharmacokinetics , Estrogens/chemistry , Estrogens/pharmacokinetics , Female , Humans
12.
Drug Des Devel Ther ; 9: 1511-54, 2015.
Article in English | MEDLINE | ID: mdl-25834399

ABSTRACT

Plumbagin (PLB) has been shown to have anticancer activities in animal models, but the role of PLB in prostate cancer treatment is unclear. This study aimed to investigate the effects of PLB on apoptosis and autophagy and the underlying mechanisms in human prostate cancer cell lines PC-3 and DU145. Our study has shown that PLB had potent pro-apoptotic and pro-autophagic effects on PC-3 and DU145 cells. PLB induced mitochondria-mediated apoptosis and autophagy in concentration- and time-dependent manners in both PC-3 and DU145 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways and activation of 5'-AMP-dependent kinase (AMPK) as indicated by their altered phosphorylation, contributing to the pro-autophagic activity of PLB. Modulation of autophagy altered basal and PLB-induced apoptosis in both cell lines. Furthermore, PLB downregulated sirtuin 1 (Sirt1), and inhibition of Sirt1 enhanced autophagy, whereas the induction of Sirt1 abolished PLB-induced autophagy in PC-3 and DU145 cells. In addition, PLB downregulated pre-B cell colony-enhancing factor/visfatin, and the inhibition of pre-B cell colony-enhancing factor/visfatin significantly enhanced basal and PLB-induced apoptosis and autophagy in both cell lines. Moreover, reduction of intracellular reactive oxygen species (ROS) level attenuated the apoptosis- and autophagy-inducing effects of PLB on both PC-3 and DU145 cells. These findings indicate that PLB promotes apoptosis and autophagy in prostate cancer cells via Sirt1- and PI3K/Akt/mTOR-mediated pathways with contribution from AMPK-, p38 MAPK-, visfatin-, and ROS-associated pathways.


Subject(s)
Apoptosis/drug effects , Naphthoquinones/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Naphthoquinones/chemistry , Prostatic Neoplasms/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
13.
Drug Des Devel Ther ; 9: 1601-26, 2015.
Article in English | MEDLINE | ID: mdl-25834400

ABSTRACT

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone; PLB), a naturally occurring naphthoquinone isolated from the roots of Plumbaginaceae plants, has been reported to possess anticancer activities in both in vitro and in vivo studies, but the effect of PLB on tongue squamous cell carcinoma (TSCC) is not fully understood. This study aimed to investigate the effects of PLB on cell cycle distribution, apoptosis, and autophagy, and the underlying mechanisms in the human TSCC cell line SCC25. The results have revealed that PLB exerted potent inducing effects on cell cycle arrest, apoptosis, and autophagy in SCC25 cells. PLB arrested SCC25 cells at the G2/M phase in a concentration- and time-dependent manner with a decrease in the expression level of cell division cycle protein 2 homolog (Cdc2) and cyclin B1 and increase in the expression level of p21 Waf1/Cip1, p27 Kip1, and p53 in SCC25 cells. PLB markedly induced apoptosis and autophagy in SCC25 cells. PLB decreased the expression of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) while increasing the expression level of the pro-apoptotic protein Bcl-2-associated X protein (Bax) in SCC25 cells. Furthermore, PLB inhibited phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß), and p38 mitogen-activated protein kinase (p38 MAPK) pathways as indicated by the alteration in the ratio of phosphorylation level over total protein expression level, contributing to the autophagy inducing effect. In addition, we found that wortmannin (a PI3K inhibitor) and SB202190 (a selective inhibitor of p38 MAPK) strikingly enhanced PLB-induced autophagy in SCC25 cells, suggesting the involvement of PI3K- and p38 MAPK-mediated signaling pathways. Moreover, PLB induced intracellular reactive oxygen species (ROS) generation and this effect was attenuated by l-glutathione (GSH) and n-acetyl-l-cysteine (NAC). Taken together, these results indicate that PLB promotes cellular apoptosis and autophagy in TSCC cells involving p38 MAPK- and PI3K/Akt/mTOR-mediated pathways with contribution from the GSK3ß and ROS-mediated pathways.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , MAP Kinase Signaling System/drug effects , Naphthoquinones/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Tongue Neoplasms/drug therapy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Division/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , Molecular Structure , Naphthoquinones/chemistry , Structure-Activity Relationship , Tongue Neoplasms/metabolism , Tongue Neoplasms/pathology , Tumor Cells, Cultured , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Drug Des Devel Ther ; 9: 1627-52, 2015.
Article in English | MEDLINE | ID: mdl-25834401

ABSTRACT

Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular apoptosis and autophagy in breast cancer cells via modulation of p38 MAPK/Akt/mTOR pathways. Further studies are warranted to further explore the molecular targets of ALS in the treatment of breast cancer.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Azepines/pharmacology , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , TOR Serine-Threonine Kinases/metabolism , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/metabolism , Azepines/chemical synthesis , Azepines/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Division/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , MCF-7 Cells , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Cells, Cultured , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Drug Des Devel Ther ; 9: 841-66, 2015.
Article in English | MEDLINE | ID: mdl-25733806

ABSTRACT

Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, ß-bisabolene, ß-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a synergistic effect on platelet aggregation in humans. Moreover, ginger components showed a rapid half-life and no to low toxicity in humans. Taken together, this study shows that ginger components may regulate the activity and expression of various human CYPs, probably resulting in alterations in drug clearance and response. More studies are warranted to identify and confirm potential ginger-drug interactions and explore possible interactions of ginger with human CYPs and other functionally important proteins, to reduce and avoid side effects induced by unfavorable ginger-drug interactions.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Molecular Docking Simulation , Pharmaceutical Preparations/chemistry , Pharmacokinetics , Zingiber officinale/adverse effects , Zingiber officinale/chemistry , Binding Sites , Drug Interactions , Humans , Molecular Structure
16.
Drug Des Devel Ther ; 9: 937-68, 2015.
Article in English | MEDLINE | ID: mdl-25733813

ABSTRACT

5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS generation in A549 cells. Collectively, this SILAC study quantitatively evaluates the proteomic response to treatment with DMXAA that helps to globally identify the potential molecular targets and elucidate the underlying mechanism of DMXAA in the treatment of NSCLC.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Isotope Labeling , Lung Neoplasms/metabolism , Neoplasm Proteins/antagonists & inhibitors , Proteome/metabolism , Xanthones/pharmacology , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Lung Neoplasms/pathology , Neoplasm Proteins/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured , Xanthones/chemistry
17.
Drug Des Devel Ther ; 9: 1027-62, 2015.
Article in English | MEDLINE | ID: mdl-25733818

ABSTRACT

Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and ß-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.


Subject(s)
Apoptosis/drug effects , Aurora Kinases/antagonists & inhibitors , Autophagy/drug effects , Benzamides/pharmacology , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Aurora Kinases/metabolism , Benzamides/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , MCF-7 Cells , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
18.
Drug Des Devel Ther ; 9: 993-1026, 2015.
Article in English | MEDLINE | ID: mdl-25733817

ABSTRACT

Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent against ESCC. Further studies are warranted to explore the molecular targets, efficacy and safety of CDDO-Me in the treatment of ESCC.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Epithelial-Mesenchymal Transition/drug effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Oleanolic Acid/analogs & derivatives , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Esophageal Squamous Cell Carcinoma , Humans , Neoplastic Stem Cells/pathology , Oleanolic Acid/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
19.
Drug Des Devel Ther ; 9: 1555-84, 2015.
Article in English | MEDLINE | ID: mdl-25792811

ABSTRACT

Osteosarcoma (OS) is the most common malignant bone tumor occurring mostly in children and adolescents between 10 and 20 years of age with poor response to current therapeutics. Alisertib (ALS, MLN8237) is a selective Aurora kinase A inhibitor that displays anticancer effects on several types of cancer. However, the role of ALS in the treatment of OS remains unknown. This study aimed to investigate the effects of ALS on the cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT) and the underlying mechanisms in two human OS cell lines U-2 OS and MG-63. The results showed that ALS had potent growth inhibitory, pro-apoptotic, pro-autophagic, and EMT inhibitory effects on U-2 OS and MG-63 cells. ALS remarkably induced G2/M arrest and down-regulated the expression levels of cyclin-dependent kinases 1 and 2 and cyclin B1 in both U-2 OS and MG-63 cells. ALS markedly induced mitochondria-mediated apoptosis with a significant increase in the expression of key pro-apoptotic proteins and a decrease in main anti-apoptotic proteins. Furthermore, ALS promoted autophagic cell death via the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways, and activation of 5'-AMP-dependent kinase (AMPK) signaling pathway. Inducers or inhibitors of apoptosis or autophagy simultaneously altered ALS-induced apoptotic and autophagic death in both U-2 OS and MG-63 cells, suggesting a crosstalk between these two primary modes of programmed cell death. Moreover, ALS suppressed EMT-like phenotypes with a marked increase in the expression of E-cadherin but a decrease in N-cadherin in U-2 OS and MG-63 cells. ALS treatment also induced reactive oxygen species (ROS) generation but inhibited the expression levels of sirtuin 1 and nuclear factor-erythroid-2-related factor 2 (Nrf2) in both cell lines. Taken together, these findings show that ALS promotes apoptosis and autophagy but inhibits EMT via PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways with involvement of ROS- and sirtuin 1-associated pathways in U-2 OS and MG-63 cells. ALS is a promising anticancer agent in OS treatment and further studies are needed to confirm its efficacy and safety in OS chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Azepines/pharmacology , MAP Kinase Signaling System/drug effects , Mitochondria/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemistry , Azepines/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mitochondria/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
20.
Drug Des Devel Ther ; 9: 537-60, 2015.
Article in English | MEDLINE | ID: mdl-25632222

ABSTRACT

Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5'-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Epithelial-Mesenchymal Transition/drug effects , Naphthoquinones/pharmacology , Pancreatic Neoplasms/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis Regulatory Proteins/metabolism , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Activation , Humans , Pancreatic Neoplasms/pathology , Phenotype , Phosphorylation , Signal Transduction/drug effects , Time Factors , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...