Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 743
Filter
1.
Int J Biol Macromol ; : 134427, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097050

ABSTRACT

Salivary glands are the principal organs responsible for secreting saliva in the oral cavity. Tumors, trauma, inflammation, and other factors can cause functional or structural damage to the glands, leading to reduced saliva secretion. In this study, we innovatively prepared a acinar-mimetic silk fibroin-collagen-astragalus polysaccharide (SCA) scaffold using low-temperature three-dimensional (3D) printing and freeze-drying techniques. We evaluated the material properties and cell compatibility of the scaffold in vitro and implanted it into the damaged parotid glands (PG) of rats to assess its efficacy in tissue reconstruction and functional repair. The results demonstrated that the SCA scaffold featured a porous structure resembling natural acini, providing an environment conducive to cell growth and orderly aggregation. It exhibited excellent porosity, water absorption, mechanical properties, and biocompatibility, fulfilling the requirements for tissue engineering scaffolds. In vitro, the scaffold facilitated adhesion, proliferation, orderly polarization, and spherical aggregation of PG cells. In vivo, the SCA scaffold effectively recruited GECs locally, forming gland-like acinar structures that matured gradually, promoting the regeneration of damaged PGs. The SCA scaffold developed in this study supports tissue reconstruction and functional repair of damaged PGs, making it a promising implant material for salivary gland regeneration.

2.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3441-3451, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041116

ABSTRACT

Type 2 diabetes(T2DM) is a metabolic disorder marked by glucose toxicity, lipotoxicity, insulin resistance, and other pathological manifestations, representing a pressing global health concern. Obesity stands out as a pivotal risk factor for T2DM development. When combined with T2DM, obesity exacerbates insulin resistance and metabolic abnormalities. The disturbance in the inflammatory microenvironmental balance between adipose and pancreatic islet tissue emerges as a significant contributor to obese with T2DM development. Macrophages play a crucial role in maintaining immune homeostasis and responding to inflammation in adipose and pancreatic islet tissue. Individuals with obese with T2DM exhibit an imbalanced M1/M2 macrophage polarization, contributing to the progression of glycolipid metabolism abnormalities. Hence, restoring the equilibrium of macrophage polarization becomes imperative for obese with T2DM treatment. Scientific researchers have demonstrated that traditional Chinese medicine(TCM) therapies can effectively modulate macrophage polarization, offering a viable approach for treating obese with T2DM. In light of the existing evidence, this study systematically reviewed the research progress of TCM targeting the balance of M1/M2 macrophage polarization to ameliorate obese with T2DM, so as to furnish evidence supporting the clinical diagnosis and treatment of obese with T2DM with TCM while also contributing to the exploration of the biological basis of obese with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Macrophages , Obesity , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/complications , Obesity/drug therapy , Obesity/immunology , Obesity/metabolism , Obesity/complications , Humans , Macrophages/drug effects , Macrophages/immunology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Animals , Medicine, Chinese Traditional
3.
Mol Biol Rep ; 51(1): 843, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042338

ABSTRACT

BACKGROUND: Energy homeostasis is vital for insects to survive food shortages. This study investigated the starvation tolerance of Spodoptera frugiperda, which invaded China in 2019, focusing on its storage protein family, crucial for energy balance. 10 storage protein family members were identified and their expression patterns at different development stages and under different starvation stress were analyzed. METHODS AND RESULTS: We used qPCR to evaluate the expression levels of storage protein family members under various larval instars and starvation conditions. We discovered that, among above 10 members, only 2 storage proteins, SfSP8 and SfSP7 showed significant upregulation in response to starvation stress. Notably, SfSP8 upregulated markedly after 24 h of fasting, whereas SfSP7 exhibited a delayed response, with significant upregulation observed only after 72 h of starvation. Then we significantly reduced the starvation tolerance of larvae through RNAi-mediated knockdown of SfSP8 and also altered the starvation response of SfSP7 from a late to an early activation pattern. Finally, we constructed transgenic Drosophila melanogaster with heterologous overexpressing SfSP8 revealed that the starvation tolerance of the transgenic line was significantly stronger than that of wild-type lines. CONCLUSIONS: SfSP8 was the core storage protein member that mediated the starvation tolerance of larvae of S. frugiperda. Our study on the novel function of storage proteins in mediating larval starvation tolerance of S. frugiperda is conducive to understanding the strong colonization of this terrible invasive pest.


Subject(s)
Insect Proteins , Larva , Spodoptera , Starvation , Animals , Spodoptera/genetics , Larva/genetics , Larva/metabolism , Starvation/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Animals, Genetically Modified , Stress, Physiological/genetics
4.
Biomed Pharmacother ; 177: 117029, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991305

ABSTRACT

Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.


Subject(s)
Amifostine , Calcium Carbonate , Nanoparticles , Radiation-Protective Agents , Calcium Carbonate/chemistry , Administration, Oral , Animals , Humans , Caco-2 Cells , Radiation-Protective Agents/administration & dosage , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/pharmacokinetics , Nanoparticles/chemistry , Amifostine/administration & dosage , Amifostine/pharmacology , Dogs , Lipids/chemistry , Madin Darby Canine Kidney Cells , Drug Delivery Systems/methods , Radiation Protection/methods , Drug Carriers/chemistry
5.
Mol Biol Rep ; 51(1): 878, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083078

ABSTRACT

BACKGROUND: Saccharosydne procerus serves as a significant alternative host for parasitoids of the important rice pest, rice planthoppers. Rearing S. procerus on the water bamboo plants near rice field can provide a parasitic site for parasitic wasps during the idle period of rice fields, thereby stabilizing the number of parasitoids and suppressing the number of rice planthoppers in the field. However, limited understanding of genetic diversity of S. procerus restricts its application. Therefore, this study aims to analyze the genetic diversity of S. procerus in Hunan region. METHODS: In this study, 16 geographical populations of the S. procerus from the Hunan region were used. After screening, ISSR primers were employed for polymorphism detection. POPGENE32 software was used for genetic diversity analysis, and UPGMA clustering was applied for statistical analysis of different geographical populations to generate an evolutionary tree. RESULTS: Eleven ISSR primers were screened, resulting in the detection of 194 amplification locus, of which 126 were polymorphic. The average percentage of polymorphic locus was 64.95%. The mean Nei's gene diversity (H) was 0.2475, the mean Shannon's Information index (I) was 0.3708, and the Genetic diversity index among populations (Gst) was 0.3800. Cluster analysis identified three groups, with most populations concentrated in the second group, indicating no clear genetic structure. This suggests that the 16 populations of S. procerus exhibit high levels of genetic diversity.


Subject(s)
Genetic Variation , Phylogeny , China , Genetic Variation/genetics , Animals , Polymorphism, Genetic , Microsatellite Repeats/genetics , Hemiptera/genetics , Oryza/genetics , Oryza/parasitology , Genetics, Population/methods
6.
Int J Pharm X ; 8: 100268, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39070171

ABSTRACT

In assisted reproduction techniques, oocytes encounter elevated levels of reactive oxygen species (ROS) during in vitro maturation (IVM). Oxidative stress adversely affects oocyte quality, hampering their maturation, growth, and subsequent development. Thus, mitigating excessive ROS to safeguard less viable oocytes during IVM stands as a viable strategy. Numerous antioxidants have been explored for oocyte IVM, yielding considerable effects; however, several aspects, including solubility, stability, and safety, demand attention and resolution. In this study, we developed nanoparticles by self-assembling endogenous bilirubin and melatonin hormone coated with bilirubin-conjugated glycol chitosan (MB@GBn) to alleviate oxidative stress and enhance oocyte maturation. The optimized MB@GBn exhibited a uniform spherical shape, measuring 128 nm in particle size, with a PDI value of 0.1807 and a surface potential of +11.35 mV. The positively charged potential facilitated nanoparticle adherence to the oocyte surface through electrostatic interaction, allowing for functional action. In vitro studies demonstrated that MB@GB significantly enhanced the maturation of compromised oocytes. Further investigation revealed MB@GB's effectiveness in scavenging ROS, reducing intracellular calcium levels, and suppressing mitochondrial polarization. This study not only offers a novel perspective on nano drug delivery systems for biomedical applications but also presents an innovative strategy for enhancing oocyte IVM.

7.
J Cardiothorac Surg ; 19(1): 312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824570

ABSTRACT

OBJECTIVE: About 10% of patients after cardiopulmonary bypass (CPB) would undergo acute liver injury, which aggravated the mortality of patients. Ac2-26 has been demonstrated to ameliorate organic injury by inhibiting inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 on acute liver injury after CPB. METHODS: A total of 32 SD rats were randomized into sham, CPB, Ac, and Ac/AKT1 groups. The rats only received anesthesia, and rats in other groups received CPB. The rats in Ac/AKT1 were pre-injected with the shRNA to interfere with the expression of AKT1. The rats in CPB were injected with saline, and rats in Ac and Ac/AKT1 groups were injected with Ac2-26. After 12 h of CPB, all the rats were sacrificed and the peripheral blood and liver samples were collected to analyze. The inflammatory factors in serum and liver were detected. The liver function was tested, and the pathological injury of liver tissue was evaluated. RESULTS: Compared with the sham group, the inflammatory factors, liver function, and pathological injury were worsened after CPB. Compared with the CPB group, the Ac2-26 significantly decreased the pro-inflammatory factors and increased the anti-inflammatory factor, improved liver function, and ameliorated the pathological injury. All the therapeutic effects of Ac2-26 were notably attenuated by the shRNA of AKT1. The Ac2-26 increased the GSK3ß and eNOS, and this promotion was inhibited by the shRNA. CONCLUSION: The Ac2-26 significantly treated the liver injury, inhibited inflammation, and improved liver function. The effect of Ac2-26 on liver injury induced by CPB was partly associated with the promotion of AKT1/GSK3ß/eNOS.


Subject(s)
Cardiopulmonary Bypass , Glycogen Synthase Kinase 3 beta , Nitric Oxide Synthase Type III , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Cardiopulmonary Bypass/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Rats , Nitric Oxide Synthase Type III/metabolism , Male , Disease Models, Animal , Liver/pathology , Signal Transduction
8.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854065

ABSTRACT

Purpose: The sphingosine-1-phosphate receptor-1 (S1PR1) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR1-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR1 radiotracer, [18F]TZ4877, in nonhuman primates. Procedures: [18F]TZ4877 was produced via nucleophilic substitution of tosylate precursor with K[18F]/F- followed by deprotection. Brain PET imaging data were acquired with a Focus220 scanner in two Macaca mulatta (6, 13 years old) for 120-180 min following bolus injection of 118-163 MBq [18F]TZ4877, with arterial blood sampling and metabolite analysis to measure the parent input function and plasma free fraction (f P). Each animal was scanned at baseline, 15-18 min after 0.047-0.063 mg/kg of the S1PR1 inhibitor ponesimod, 33 min after 0.4-0.8 mg/kg of the S1PR1-specific compound TZ82112, and 167-195 min after 1 ng/kg of the immune stimulus endotoxin. Kinetic analysis with metabolite-corrected input function was performed to estimate the free fraction corrected total distribution volume (V T/f P). Whole-body dosimetry scans were acquired in 2 animals (1M, 1F) with a Biograph Vision PET/CT System, and absorbed radiation dose estimates were calculated with OLINDA. Results: [18F]TZ4877 exhibited fast kinetics that were described by the reversible 2-tissue compartment model. Baseline [18F]TZ4877 f P was low (< 1%), and [18F]TZ4877 V T/f P values were 233-866 mL/cm3. TZ82112 dose-dependently reduced [18F]TZ4877 V T/f P, while ponesimod and endotoxin exhibited negligible effects on V T/f P, possibly due to scan timing relative to dosing. Dosimetry studies identified the critical organs of gallbladder (0.42 (M) and 0.31 (F) mSv/MBq) for anesthetized nonhuman primate. Conclusions: [18F]TZ4877 exhibits reversible kinetic properties, but the low f P value limits quantification with this radiotracer. S1PR1 is a compelling PET imaging target, and these data support pursuing alternative F-18 labeled radiotracers for potential future human studies.

9.
Brain Behav ; 14(6): e3601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898628

ABSTRACT

OBJECTIVE: To explore the functional connectivity (FC) characteristics of the episodic memory network (EMN) in amnestic mild cognitive impairment (aMCI) patients with different levels of executive function (EF). METHODS: This study included 76 participants from the Alzheimer's Disease Neuroimaging Initiative database, comprising 23 healthy controls (HCs) and 53 aMCI patients. Based on EF levels, aMCI patients were categorized into aMCI-highEF and aMCI-lowEF groups. Cognitive function scores, pathological markers (cerebrospinal fluid ß-amyloid, total tau protein, phosphorylated tau protein, AV45-PET, and FDG-PET), and functional magnetic resonance imaging were collected and compared among the three groups. Seed-based FC analysis was used to examine differences in the EMN among the groups, and partial correlation analysis was employed to investigate the relationship between changes in FC and cognitive function scores as well as pathological markers. RESULTS: Compared to the aMCI-highEF group, the aMCI-lowEF group exhibited more severe cognitive impairment, decreased cerebral glucose metabolism, and elevated AV45 levels. Significant FC differences in the left superior temporal gyrus (STG) of the EMN were observed among the three groups. Post hoc analysis revealed that the aMCI-lowEF group had increased FC in the left STG compared to the HCs and aMCI-highEF groups, with statistically significant differences. Correlation analysis showed a significant negative correlation between the differences in FC in the left STG of aMCI-highEF and aMCI-lowEF groups and Rey Auditory Verbal Learning Test forgetting scores. Receiver operator characteristic curve analysis indicated an area under the curve of 0.741 for distinguishing between aMCI-highEF and aMCI-lowEF groups based on FC of left STG, with a sensitivity of 0.808 and a specificity of 0.667. CONCLUSION: aMCI-lowEF exhibits characteristic changes in FC within the EMN, providing theoretical support for the role of EF in mediating EMN alterations and, consequently, impacting episodic memory function.


Subject(s)
Amnesia , Cognitive Dysfunction , Executive Function , Magnetic Resonance Imaging , Memory, Episodic , Positron-Emission Tomography , Humans , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Male , Female , Aged , Executive Function/physiology , Amnesia/physiopathology , Amnesia/diagnostic imaging , Middle Aged , Neuropsychological Tests , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
10.
Org Biomol Chem ; 22(26): 5428-5453, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38884683

ABSTRACT

Here we report our design and synthesis of 28 new fluorine-containing compounds as potential F-18 radiotracers for CNS imaging of sphingosine-1-phosphate receptor 1 (S1PR1), and determination of their in vitro binding potency and selectivity toward S1PR1 over other S1PR subtypes. Nine potent and selective compounds, 7c&d, 9a&c, 12b, 15b, and 18a-c with IC50 values ranging from 0.6-12.3 nM for S1PR1 and weak binding toward S1PR2, 3, 4, and 5, were further 18F-radiolabeled to produce [18F]7c&d, [18F]9a&c, [18F]12b, [18F]15b, and [18F]18a-c. Multi-step F-18 radiochemistry procedures were investigated for radiosynthesis of [18F]7c&d and [18F]9a&c, and the presumed intermediates were synthesized and authenticated by analytic HPLC. We then performed nonhuman primate (NHP) PET brain imaging studies for eight radiotracers: [18F]7c&d, [18F]9a, [18F]12b, [18F]15b, and [18F]18a-c. Three radiotracers, [18F]7c, [18F]7d, and [18F]15b, had high NHP brain uptake with standardized uptake values (SUVs) at 2 h post-injection of 2.42, 2.84, and 2.00, respectively, and good brain retention. Our ex vivo biodistribution study in rats confirmed [18F]7d had a high brain uptake with no in vivo defluorination. Radiometabolic analysis of [18F]7c and [18F]7d in rat plasma and brain samples found that [18F]7c has a more favorable metabolic profile than [18F]7d. However, the trend of increased brain uptake precludes [18F]7c as a suitable PET radiotracer for imaging S1PR1 in the brain. Further structural optmization is warranted to identify a highly S1PR1-specific radiotracer with rapid brain uptake kinetics.


Subject(s)
Drug Design , Fluorine Radioisotopes , Sphingosine-1-Phosphate Receptors , Animals , Fluorine Radioisotopes/chemistry , Sphingosine-1-Phosphate Receptors/metabolism , Rats , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Brain/diagnostic imaging , Brain/metabolism , Receptors, Lysosphingolipid/metabolism , Humans , Tissue Distribution , Male , Macaca mulatta
11.
Plant Cell Rep ; 43(7): 165, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861173

ABSTRACT

KEY MESSAGE: SmSAUR4, SmSAUR18, SmSAUR28, SmSAUR37, and SmSAUR38 were probably involved in the auxin-mediated root development in Salvia miltiorrhiza. Salvia miltiorrhiza is a widely utilized medicinal plant in China. Its roots and rhizomes are the main medicinal portions and are closely related to the quality of this herb. Previous studies have revealed that auxin plays pivotal roles in S. miltiorrhiza root development. Whether small auxin-up RNA genes (SAURs), which are crucial early auxin response genes, are involved in auxin-mediated root development in S. miltiorrhiza is worthy of investigation. In this study, 55 SmSAUR genes in S. miltiorrhiza were identified, and their physical and chemical properties, gene structure, cis-acting elements, and evolutionary relationships were analyzed. The expression levels of SmSAUR genes in different organs of S. miltiorrhiza were detected using RNA-seq combined with qRT‒PCR. The root development of S. miltiorrhiza seedlings was altered by the application of indole-3-acetic acid (IAA), and Pearson correlation coefficient analysis was conducted to screen SmSAURs that potentially participate in this physiological process. The diameter of primary lateral roots was positively correlated with SmSAUR4. The secondary lateral root number was positively correlated with SmSAUR18 and negatively correlated with SmSAUR4. The root length showed a positive correlation with SmSAUR28 and SmSAUR37 and a negative correlation with SmSAUR38. The fresh root biomass exhibited a positive correlation with SmSAUR38 and a negative correlation with SmSAUR28. The aforementioned SmSAURs were likely involved in auxin-mediated root development in S. miltiorrhiza. Our study provides a comprehensive overview of SmSAURs and provides the groundwork for elucidating the molecular mechanism underlying root morphogenesis in this species.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Plant Roots , Salvia miltiorrhiza , Plant Roots/genetics , Plant Roots/growth & development , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/growth & development , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Phylogeny , Genes, Plant , Genome, Plant , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects
12.
Materials (Basel) ; 17(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930266

ABSTRACT

Transition metal oxide (TMO)-based nanozymes have appeared as hopeful tools for antitumor applications due to their unique catalytic properties and ability to modulate the tumor microenvironment (TME). The purpose of this review is to provide an overview of the latest progress made in the field of TMO-based nanozymes, focusing on their enzymatic activities and participating metal ions. These nanozymes exhibit catalase (CAT)-, peroxidase (POD)-, superoxide dismutase (SOD)-, oxidase (OXD)-, and glutathione oxidase (GSH-OXD)-like activities, enabling them to regulate reactive oxygen species (ROS) levels and glutathione (GSH) concentrations within the TME. Widely studied transition metals in TMO-based nanozymes include Fe, Mn, Cu, Ce, and the hybrid multimetallic oxides, which are also summarized. The review highlights several innovative nanozyme designs and their multifunctional capabilities. Despite the significant progress in TMO-based nanozymes, challenges such as long-term biosafety, targeting precision, catalytic mechanisms, and theoretical supports remain to be addressed, and these are also discussed. This review contributes to the summary and understanding of the rapid development of TMO-based nanozymes, which holds great promise for advancing nanomedicine and improving cancer treatment.

13.
Int J Biol Macromol ; 274(Pt 2): 133258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925171

ABSTRACT

Bacterial infection and tissue hypoxia always prevent wound healing, so multifunctional platforms with antimicrobial and oxygen-supplying functions were developed. However, they face many difficulties such as complex preparation and low oxygen release. To address this challenge, a copper peroxide loaded gelatin/oxide dextran hydrogel (CGO) was prepared. Surprisingly, CGO hydrogel as a wound dressing not only had good biocompatibility, injectivity, and mechanical properties, but also exhibited mild photothermal properties, temperature responsiveness, and pH responsiveness. After being applied to wounds infected with bacteria, CGO hydrogel released copper peroxide under near-infrared laser irradiation, which produced copper ions and hydrogen peroxide, combined with PTT to kill bacteria. After the bacteria were cleared from the wound and the pH of the wound was changed to be acidic, CGO hydrogel released copper peroxide via pH response. Copper ions and oxygen produced from copper peroxide accelerated wound healing by promoting angiogenesis. The multi-responsive and multi-mode treatment platform provided a potential strategy for treating bacteria-infected wounds.


Subject(s)
Anti-Bacterial Agents , Copper , Dextrans , Gelatin , Hydrogels , Wound Healing , Wound Healing/drug effects , Dextrans/chemistry , Dextrans/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gelatin/chemistry , Animals , Copper/chemistry , Copper/pharmacology , Mice , Temperature , Peroxides/chemistry , Peroxides/pharmacology , Oxides/chemistry , Oxides/pharmacology , Staphylococcus aureus/drug effects , Humans
14.
Mol Pharm ; 21(6): 2970-2980, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38742943

ABSTRACT

One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.


Subject(s)
Doxorubicin , Nanoparticles , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Animals , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Mice , Liposomes/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Tissue Distribution , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Mice, Inbred BALB C , Liver/drug effects , Liver/metabolism , Particle Size , Nanomedicine/methods , Humans , Male , Female
15.
Angew Chem Int Ed Engl ; : e202407597, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818663

ABSTRACT

Aromatic amines are important commercial chemicals, but their carcinogenicity poses a threat to humans and other organisms, making their rapid quantitative detection increasingly urgent. Here, amorphous MoO3 (a-MoO3) monolayers with localized surface plasmon resonance (LSPR) effect in the visible region are designed for the trace detection of carcinogenic aromatic amine molecules. The hot-electron fast decay component of a-MoO3 decreases from 301 fs to 150 fs after absorption with methyl orange (MO) molecules, indicating the plasmon-induced hot-electron transfer (PIHET) process from a-MoO3 to MO. Therefore, a-MoO3 monolayers present high SERS performance due to the synergistic effect of electromagnetic enhancement (EM) and PIHET, proposing the EM-PIHET synergistic mechanism in a-MoO3. In addition, a-MoO3 possesses higher electron delocalization and electronic state density than crystal MoO3 (c-MoO3), which is conducive to the PIHET. The limit of detection (LOD) for o-aminoazotoluene (o-AAT) is 10-9 M with good uniformity, acid resistance, and thermal stability. In this work, trace detection and identification of various carcinogenic aromatic amines based on a-MoO3 monolayers is realized, which is of great significance for reducing cancer infection rates.

16.
BMC Anesthesiol ; 24(1): 177, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762729

ABSTRACT

BACKGROUND: Post-anesthetic emergence agitation is common after general anesthesia and may cause adverse consequences, such as injury as well as respiratory and circulatory complications. Emergence agitation after general anesthesia occurs more frequently in nasal surgery than in other surgical procedures. This study aimed to assess the occurrence of emergence agitation in patients undergoing nasal surgery who were extubated under deep anesthesia or when fully awake. METHODS: A total of 202 patients (18-60 years, American Society of Anesthesiologists classification: I-II) undergoing nasal surgery under general anesthesia were randomized 1:1 into two groups: a deep extubation group (group D) and an awake extubation group (group A). The primary outcome was the incidence of emergence agitation. The secondary outcomes included number of emergence agitations, sedation score, vital signs, and incidence of adverse events. RESULTS: The incidence of emergence agitation was lower in group D than in group A (34.7% vs. 72.8%; p < 0.001). Compared to group A, patients in group D had lower Richmond Agitation-Sedation Scale scores, higher Ramsay sedation scores, fewer agitation episodes, and lower mean arterial pressure when extubated and 30 min after surgery, whereas these indicators did not differ 90 min after surgery. There was no difference in the incidence of adverse events between the two groups. CONCLUSIONS: Extubation under deep anesthesia can significantly reduce emergence agitation after nasal surgery under general anesthesia without increasing the incidence of adverse events. TRIAL REGISTRATION: Registered in Clinicaltrials.gov (NCT04844333) on 14/04/2021.


Subject(s)
Airway Extubation , Anesthesia, General , Emergence Delirium , Nasal Surgical Procedures , Humans , Airway Extubation/methods , Female , Male , Adult , Middle Aged , Emergence Delirium/prevention & control , Emergence Delirium/epidemiology , Emergence Delirium/etiology , Anesthesia, General/methods , Nasal Surgical Procedures/methods , Nasal Surgical Procedures/adverse effects , Young Adult , Adolescent , Wakefulness , Anesthesia Recovery Period
17.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38701238

ABSTRACT

Climate change significantly affects crop production and is a threat to global food security. Conventional tillage (CT) is the primary tillage practice in rain-fed areas to conserve soil moisture. Despite previous research on the effect of tillage methods on different cropping systems, a comparison of tillage methods on soil water storage, crop yield and crop water use in wheat (Triticum aestivum ) and maize (Zea mays ) under different soil textures, precipitation and temperature patterns is needed. We reviewed 119 published articles and used meta-analysis to assess the effects of three conservation tillage practices (NT, no-tillage; RT, reduced tillage; ST, subsoil tillage), on precipitation storage efficiency (PSE), soil water storage at crop planting (SWSp), grain yield, evapotranspiration (ET) and water use efficiency (WUE) under varying precipitation and temperature patterns and soil textures in dryland wheat and maize, with CT as the control treatment. Conservation tillage methods increased PSE, SWSp, grain yield, ET and WUE in both winter wheat-fallow and spring maize cropping systems. More precipitation water was conserved in fine-textured soils than in medium-textured and coarse-textured soils, which improved ET. Conservation tillage increased soil water conservation and yield under high mean annual precipitation (MAP) and moderate mean annual temperature (MAT) conditions in winter wheat. However, soil water conservation and yield were greater under MAP <400mm and moderate MAT. We conclude that conservation tillage could be promising for increasing precipitation storage, soil water conservation and crop yield in regions with medium to low MAPs and medium to high MATs.


Subject(s)
Agriculture , Soil , Triticum , Water , Zea mays , Zea mays/growth & development , Triticum/growth & development , Soil/chemistry , Water/metabolism , Agriculture/methods , Crop Production/methods , Edible Grain/growth & development , Crops, Agricultural/growth & development
18.
Int J Nanomedicine ; 19: 4339-4356, 2024.
Article in English | MEDLINE | ID: mdl-38774026

ABSTRACT

Background: The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods: In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results: The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion: In summary, Cur-Dox ND might be a promising ND for better cancer therapy.


Subject(s)
Curcumin , Doxorubicin , Povidone , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Povidone/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/pharmacokinetics , Cell Line, Tumor , Animals , Mice , Humans , Nanoparticles/chemistry , Particle Size , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Photothermal Therapy/methods , Drug Liberation , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Drug Carriers/chemistry , Cell Survival/drug effects
19.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773462

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Subject(s)
Cardiopulmonary Bypass , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis/drug effects , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Neurons/enzymology , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Edema/prevention & control , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/pathology , Anti-Inflammatory Agents/pharmacology , Rats , S100 Calcium Binding Protein beta Subunit/metabolism , Inflammation Mediators/metabolism
20.
ACS Chem Neurosci ; 15(9): 1882-1892, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38634759

ABSTRACT

The sphingosine-1-phosphate receptor 1 (S1PR1) radiotracer [11C]CS1P1 has shown promise in proof-of-concept PET imaging of neuroinflammation in multiple sclerosis (MS). Our HPLC radiometabolite analysis of human plasma samples collected during PET scans with [11C]CS1P1 detected a radiometabolite peak that is more lipophilic than [11C]CS1P1. Radiolabeled metabolites that cross the blood-brain barrier complicate quantitative modeling of neuroimaging tracers; thus, characterizing such radiometabolites is important. Here, we report our detailed investigation of the metabolite profile of [11C]CS1P1 in rats, nonhuman primates, and humans. CS1P1 is a fluorine-containing ligand that we labeled with C-11 or F-18 for preclinical studies; the brain uptake was similar for both radiotracers. The same lipophilic radiometabolite found in human studies also was observed in plasma samples of rats and NHPs for CS1P1 labeled with either C-11 or F-18. We characterized the metabolite in detail using rats after injection of the nonradioactive CS1P1. To authenticate the molecular structure of this radiometabolite, we injected rats with 8 mg/kg of CS1P1 to collect plasma for solvent extraction and HPLC injection, followed by LC/MS analysis of the same metabolite. The LC/MS data indicated in vivo mono-oxidation of CS1P1 produces the metabolite. Subsequently, we synthesized three different mono-oxidized derivatives of CS1P1 for further investigation. Comparing the retention times of the mono-oxidized derivatives with the metabolite observed in rats injected with CS1P1 identified the metabolite as N-oxide 1, also named TZ82121. The MS fragmentation pattern of N-oxide 1 also matched that of the major metabolite in rat plasma. To confirm that metabolite TZ82121 does not enter the brain, we radiosynthesized [18F]TZ82121 by the oxidation of [18F]FS1P1. Radio-HPLC analysis confirmed that [18F]TZ82121 matched the radiometabolite observed in rat plasma post injection of [18F]FS1P1. Furthermore, the acute biodistribution study in SD rats and PET brain imaging in a nonhuman primate showed that [18F]TZ82121 does not enter the rat or nonhuman primate brain. Consequently, we concluded that the major lipophilic radiometabolite N-oxide [11C]TZ82121, detected in human plasma post injection of [11C]CS1P1, does not enter the brain to confound quantitative PET data analysis. [11C]CS1P1 is a promising S1PR1 radiotracer for detecting S1PR1 expression in the CNS.


Subject(s)
Brain , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Humans , Positron-Emission Tomography/methods , Rats , Brain/metabolism , Brain/diagnostic imaging , Radiopharmaceuticals/pharmacokinetics , Male , Sphingosine-1-Phosphate Receptors/metabolism , Rats, Sprague-Dawley , Fluorine Radioisotopes , Carbon Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL