Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Ophthalmol Glaucoma ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097094

ABSTRACT

OBJECTIVE: To explore the impact of the apolipoprotein E (APOE) E4 allele in the gender-specific aging process in glaucoma by illustrating the interaction between risk factors, including the APOE E4 allele, gender and intraocular pressure (IOP), for age at diagnosis (AAD) of glaucoma. DESIGN: A cross-sectional study included UK Biobank participants with complete data (2006-2010) for analysis. Data were analyzed in December 2023. PARTICIPANTS: 2,236 glaucoma patients and 103,232 controls. METHODS: We evaluated multivariable-adjusted associations of AAD of glaucoma, APOE E4 allele (0: absence; 1: presence), and IOP using linear mixed model (LMM) analyses across groups stratified by AAD of mean age of menopause (50 years) and gender. MAIN OUTCOMES MEASURES: AAD of glaucoma, APOE E4 allele and IOP. RESULTS: Glaucoma patients were older and had a higher percentage of males and a higher mean IOP compared to controls (all P < 0.001). Further stratifying the glaucoma patients by AAD of 50 and gender, lower IOP (Model 1 adjusted by age, ßIOP=-0.096±0.041, P=0.019) and positive APOE E4 allele (Model 2 adjusted by age and IOP, ße4=1.093±0.488, P=0.026) were associated with an older AAD in females with an AAD < 50 years under univariate LMM. In multivariate LMM adjusted by age (Model 3), the effect size of both factors increased in the multivariate model as the beta-value increased. (ßIOP=-0.111±0.040, P=0.007; ße4=1.235±0.485, P=0.012) (Model 1 vs Model 3: P=0.011). In females with an AAD ≥50 years, only positive APOE E4 allele (adjusted by age and IOP, ße4=-1.121±0.412, P=0.007) was associated with a younger AAD. In males, only higher IOP was associated with an older AAD in those with an AAD ≥50 years (ßIOP=0.088±0.032, P=0.006). CONCLUSIONS: APOE E4 allele may initially delay and later accelerate the development of glaucoma in females around the transition period of 50 years, which is the mean age of menopause, and importantly, this is independent of IOP. Understanding the specific transition states and modifiable factors within each age phase is crucial for developing interventions or strategies that promote healthy aging.

2.
JAMA Psychiatry ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959008

ABSTRACT

Importance: Subjective cognitive decline (SCD) is recognized to be in the Alzheimer disease (AD) cognitive continuum. The SCD Initiative International Working Group recently proposed SCD-plus (SCD+) features that increase risk for future objective cognitive decline but that have not been assessed in a large community-based setting. Objective: To assess SCD risk for mild cognitive impairment (MCI), AD, and all-cause dementia, using SCD+ criteria among cognitively normal adults. Design, Setting, and Participants: The Framingham Heart Study, a community-based prospective cohort study, assessed SCD between 2005 and 2019, with up to 12 years of follow-up. Participants 60 years and older with normal cognition at analytic baseline were included. Cox proportional hazards (CPH) models were adjusted for baseline age, sex, education, APOE ε4 status, and tertiles of AD polygenic risk score (PRS), excluding the APOE region. Data were analyzed from May 2021 to November 2023. Exposure: SCD was assessed longitudinally using a single question and considered present if endorsed at the last cognitively normal visit. It was treated as a time-varying variable, beginning at the first of consecutive, cognitively normal visits, including the last, at which it was endorsed. Main Outcomes and Measures: Consensus-diagnosed MCI, AD, and all-cause dementia. Results: This study included 3585 participants (mean [SD] baseline age, 68.0 [7.7] years; 1975 female [55.1%]). A total of 1596 participants (44.5%) had SCD, and 770 (21.5%) were carriers of APOE ε4. APOE ε4 and tertiles of AD PRS status did not significantly differ between the SCD and non-SCD groups. MCI, AD, and all-cause dementia were diagnosed in 236 participants (6.6%), 73 participants (2.0%), and 89 participants (2.5%), respectively, during follow-up. On average, SCD preceded MCI by 4.4 years, AD by 6.8 years, and all-cause dementia by 6.9 years. SCD was significantly associated with survival time to MCI (hazard ratio [HR], 1.57; 95% CI, 1.22-2.03; P <.001), AD (HR, 2.98; 95% CI, 1.89-4.70; P <.001), and all-cause dementia (HR, 2.14; 95% CI, 1.44-3.18; P <.001). After adjustment for APOE and AD PRS, the hazards of SCD were largely unchanged. Conclusions and Relevance: Results of this cohort study suggest that in a community setting, SCD reflecting SCD+ features was associated with an increased risk of future MCI, AD, and all-cause dementia with similar hazards estimated in clinic-based settings. SCD may be an independent risk factor for AD and other dementias beyond the risk incurred by APOE ε4 and AD PRS.

3.
J Med Internet Res ; 26: e45780, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073857

ABSTRACT

BACKGROUND: Cerebral microbleeds (CMB) increase the risk for Alzheimer disease. Current neuroimaging methods that are used to detect CMB are costly and not always accessible. OBJECTIVE: This study aimed to explore whether the digital clock-drawing test (DCT) may provide a behavioral indicator of CMB. METHODS: In this study, we analyzed data from participants in the Framingham Heart Study offspring cohort who underwent both brain magnetic resonance imaging scans (Siemens 1.5T, Siemens Healthcare Private Limited; T2*-GRE weighted sequences) for CMB diagnosis and the DCT as a predictor. Additionally, paper-based clock-drawing tests were also collected during the DCT. Individuals with a history of dementia or stroke were excluded. Robust multivariable linear regression models were used to examine the association between DCT facet scores with CMB prevalence, adjusting for relevant covariates. Receiver operating characteristic (ROC) curve analyses were used to evaluate DCT facet scores as predictors of CMB prevalence. Sensitivity analyses were conducted by further including participants with stroke and dementia. RESULTS: The study sample consisted of 1020 (n=585, 57.35% female) individuals aged 45 years and older (mean 72, SD 7.9 years). Among them, 64 (6.27%) participants exhibited CMB, comprising 46 with lobar-only, 11 with deep-only, and 7 with mixed (lobar+deep) CMB. Individuals with CMB tended to be older and had a higher prevalence of mild cognitive impairment and higher white matter hyperintensities compared to those without CMB (P<.05). While CMB were not associated with the paper-based clock-drawing test, participants with CMB had a lower overall DCT score (CMB: mean 68, SD 23 vs non-CMB: mean 76, SD 20; P=.009) in the univariate comparison. In the robust multiple regression model adjusted for covariates, deep CMB were significantly associated with lower scores on the drawing efficiency (ß=-0.65, 95% CI -1.15 to -0.15; P=.01) and simple motor (ß=-0.86, 95% CI -1.43 to -0.30; P=.003) domains of the command DCT. In the ROC curve analysis, DCT facets discriminated between no CMB and the CMB subtypes. The area under the ROC curve was 0.76 (95% CI 0.69-0.83) for lobar CMB, 0.88 (95% CI 0.78-0.98) for deep CMB, and 0.98 (95% CI 0.96-1.00) for mixed CMB, where the area under the ROC curve value nearing 1 indicated an accurate model. CONCLUSIONS: The study indicates a significant association between CMB, especially deep and mixed types, and reduced performance in drawing efficiency and motor skills as assessed by the DCT. This highlights the potential of the DCT for early detection of CMB and their subtypes, providing a reliable alternative for cognitive assessment and making it a valuable tool for primary care screening before neuroimaging referral.


Subject(s)
Brain , Cerebral Hemorrhage , Humans , Female , Male , Aged , Middle Aged , Cerebral Hemorrhage/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Cohort Studies , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology
4.
Diabetes Care ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078159

ABSTRACT

OBJECTIVE: Type 2 diabetes and glucose metabolism have previously been linked to Alzheimer disease (AD). Yet, findings on the relation of glucose metabolism with amyloid-ß and tau pathology later in life remain unclear. RESEARCH DESIGN AND METHODS: We included 288 participants (mean age = 43.1 years, SD = 10.7, range 20-70 years) without dementia, from the Framingham Heart Study, who had available measures of glucose metabolism (i.e., one-time fasting plasma glucose and insulin) and positron emission tomography (PET) measures of amyloid-ß and/or tau 14 years later. We performed linear regression analyses to test associations of plasma glucose (continuously and categorically; elevated defined as >100 mg/dL), plasma insulin, homeostatic model assessment for insulin resistance (HOMA-IR) with amyloid-ß or tau load on PET. When significant, we explored whether age, sex, and APOE ε4 allele carriership (AD genetic risk) modified these associations. RESULTS: Our findings indicated that elevated plasma glucose was associated with greater tau load 14 years later (B [95% CI] = 0.03 [0.01-0.05], P = 0.024 after false discovery rate [FDR] correction) but not amyloid-ß. APOE ε4 carriership modified this association (B [95% CI] = -0.08 [-0.12 to -0.03], P = 0.001), indicating that the association was only present in APOE ε4 noncarriers (n = 225). Plasma insulin and HOMA-IR were not associated with amyloid-ß or τ load 14 years later after FDR correction. CONCLUSIONS: Our findings suggest that glucose metabolism is associated with increased future tau but not amyloid-ß load. This provides relevant knowledge for prevention strategies and prognostics to improve health care.

5.
Explor Med ; 5(2): 193-214, 2024.
Article in English | MEDLINE | ID: mdl-38854406

ABSTRACT

Aim: Endothelial dysfunction has been associated with both cerebrovascular pathology and Alzheimer's disease (AD). However, the connection between circulating endothelial cells and the risk of AD remains uncertain. The objective was to leverage data from the Framingham Heart Study to investigate various circulating endothelial subtypes and their potential correlations with the risk of AD. Methods: The study conducted data analyses using Cox proportional hazard regression and linear regression methods. Additionally, genome-wide association study (GWAS) was carried out to further explore the data. Results: Among the eleven distinct circulating endothelial subtypes, only circulating endothelial progenitor cells (EPCs) expressing CD34+CD133+ were found to be negatively and dose-dependently associated with reduced AD risk. This association persisted even after adjusting for age, sex, years of education, apolipoprotein E (APOE) ε4 status, and various vascular diseases. Particularly noteworthy was the significant association observed in individuals with hypertension and cerebral microbleeds. Consistently, positive associations were identified between CD34+CD133+ EPCs and specific brain regions, such as higher proportions of circulating CD34+CD133+ cells correlating with increased volumes of white matter and the hippocampus. Additionally, a GWAS study unveiled that CD34+CD133+ cells influenced AD risk specifically in individuals with homozygous genotypes for variants in two stem cell-related genes: kirre like nephrin family adhesion molecule 3 (KIRREL3, rs580382 CC and rs4144611 TT) and exocyst complex component 6B (EXOC6B, rs61619102 CC). Conclusions: The findings suggest that circulating CD34+CD133+ EPCs possess a protective effect and may offer a new therapeutic avenue for AD, especially in individuals with vascular pathology and those carrying specific genotypes of KIRREL3 and EXOC6B genes.

6.
J Alzheimers Dis ; 97(2): 621-633, 2024.
Article in English | MEDLINE | ID: mdl-38143358

ABSTRACT

BACKGROUND: Although cerebrospinal fluid (CSF) amyloid-ß42 peptide (Aß42) and phosphorylated tau (p-tau) and blood p-tau are valuable for differential diagnosis of Alzheimer's disease (AD) from cognitively normal (CN) there is a lack of validated biomarkers for mild cognitive impairment (MCI). OBJECTIVE: This study sought to determine how plasma and CSF protein markers compared in the characterization of MCI and AD status. METHODS: This cohort study included Alzheimer's Disease Neuroimaging Initiative (ADNI) participants who had baseline levels of 75 proteins measured commonly in plasma and CSF (257 total, 46 CN, 143 MCI, and 68 AD). Logistic regression, least absolute shrinkage and selection operator (LASSO) and Random Forest (RF) methods were used to identify the protein candidates for the disease classification. RESULTS: We observed that six plasma proteins panel (APOE, AMBP, C3, IL16, IGFBP2, APOD) outperformed the seven CSF proteins panel (VEGFA, HGF, PRL, FABP3, FGF4, CD40, RETN) as well as AD markers (CSF p-tau and Aß42) to distinguish the MCI from AD [area under the curve (AUC) = 0.75 (plasma proteins), AUC = 0.60 (CSF proteins) and AUC = 0.56 (CSF p-tau and Aß42)]. Also, these six plasma proteins performed better than the CSF proteins and were in line with CSF p-tau and Aß42 in differentiating CN versus MCI subjects [AUC = 0.89 (plasma proteins), AUC = 0.85 (CSF proteins) and AUC = 0.89 (CSF p-tau and Aß42)]. These results were adjusted for age, sex, education, and APOEϵ4 genotype. CONCLUSIONS: This study suggests that the combination of 6 plasma proteins can serve as an effective marker for differentiating MCI from AD and CN.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Cerebrospinal Fluid Proteins , Amyloid beta-Peptides/cerebrospinal fluid , Cohort Studies , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Blood Proteins , Peptide Fragments/cerebrospinal fluid
7.
Acta Neuropathol ; 147(1): 5, 2023 12 30.
Article in English | MEDLINE | ID: mdl-38159140

ABSTRACT

Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , tau Proteins , Autopsy , Biomarkers
8.
J Comp Neurol ; 531(18): 2162-2171, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010204

ABSTRACT

INTRODUCTION: Previous Alzheimer's disease and related dementias (AD/ADRD) research studies have illustrated the significance of studying alterations in white matter (WM). Fewer studies have examined how WM integrity, measured with diffusion tensor imaging (DTI), is associated with volume of gray matter (GM) regions and measures of cognitive function in aged participants spanning the dementia continuum. METHODS: Magnetic resonance imaging and cognitive data were collected from 241 Boston University Alzheimer's Disease Research Center participants who spanned from cognitively normal controls to amnestic mild cognitive impairment to having dementia. Primary DTI tracts of interest were the cingulum ventral (CV) and cingulum dorsal (CD) pathways. GM regions of interest (ROIs) were in the medial temporal lobe (MTL), prefrontal cortex, and retrosplenial cortex. Analyses of covariance models were used to assess differences in WM integrity across groups (control, amnestic mild cognitive impairment, and dementia). Multiple linear regression models were used to assess associations between WM integrity and GM volume, and with measures of memory and executive function. RESULTS: Differences in WM integrity were shown in both cingulum pathways in participants across the dementia continuum. Associations between WM integrity of both cingulum pathways and volume of selected GM ROIs were widespread. Functionally significant associations were found between WM of the CV pathway and memory, independent of MTL GM volume. DISCUSSION: Differences in WM integrity of the cingulum bundle and surrounding GM ROI are likely related to the progression of AD/ADRD. Such differences should continue to be studied, particularly in association with memory performance.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Aged , White Matter/metabolism , Alzheimer Disease/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Diffusion Tensor Imaging/methods , Cognition , Cognitive Dysfunction/pathology , Brain/pathology
9.
Alzheimers Dement (Amst) ; 15(4): e12492, 2023.
Article in English | MEDLINE | ID: mdl-37885919

ABSTRACT

Introduction: This study examined plasma glial fibrillary acidic protein (GFAP) as a biomarker of cognitive impairment due to Alzheimer's disease (AD) with and against plasma neurofilament light chain (NfL), and phosphorylated tau (p-tau)181+231. Methods: Plasma samples were analyzed using Simoa platform for 567 participants spanning the AD continuum. Cognitive diagnosis, neuropsychological testing, and dementia severity were examined for cross-sectional and longitudinal outcomes. Results: Plasma GFAP discriminated AD dementia from normal cognition (adjusted mean difference = 0.90 standard deviation [SD]) and mild cognitive impairment (adjusted mean difference = 0.72 SD), and demonstrated superior discrimination compared to alternative plasma biomarkers. Higher GFAP was associated with worse dementia severity and worse performance on 11 of 12 neuropsychological tests. Longitudinally, GFAP predicted decline in memory, but did not predict conversion to mild cognitive impairment or dementia. Discussion: Plasma GFAP was associated with clinical outcomes related to suspected AD and could be of assistance in a plasma biomarker panel to detect in vivo AD.

10.
Res Sq ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37841863

ABSTRACT

Background: Previous study shows that monocyte chemoattractant protein-1 (MCP-1), which is implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption, modulates the genetic risks of AD in established AD loci. Methods: In this study, we hypothesized that blood MCP-1 impacts the AD risk of genetic variants beyond known AD loci. We thus performed a genome-wide association study (GWAS) using the logistic regression via generalized estimating equations (GEE) and the Cox proportional-hazards models to examine the interactive effects between single nucleotide polymorphisms (SNPs) and blood MCP-1 level on AD in three cohorts: the Framingham Heart Study (FHS), Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study/Memory and Aging Project (ROSMAP). Results: We identified SNPs in two genes, neuron navigator 3 (NAV3, also named Unc-53 Homolog 3, rs696468) (p < 7.55×10- 9) and Unc-5 Netrin Receptor C (UNC5C rs72659964) (p < 1.07×10- 8) that showed an association between increasing levels of blood MCP-1 and AD. Elevating blood MCP-1 concentrations increased AD risk and AD pathology in genotypes of NAV3 (rs696468-CC) and UNC5C (rs72659964-AT + TT), but did not influence the other counterpart genotypes of these variants. Conclusions: NAV3 and UNC5C are homologs and may increase AD risk through dysregulating the functions of neurite outgrowth and guidance. Overall, the association of risk alleles of NAV3 and UNC5C with AD is enhanced by peripheral MCP-1 level, suggesting that lowering the level of blood MCP-1 may reduce the risk of developing AD for people with these genotypes.

11.
J Alzheimers Dis ; 95(3): 869-885, 2023.
Article in English | MEDLINE | ID: mdl-37661885

ABSTRACT

BACKGROUND: Blood-brain barrier (BBB) breakdown is a crucial aspect of Alzheimer's disease (AD) progression. Dysfunction in BBB is primarily caused by impaired tight junction and adherens junction proteins in brain microvascular endothelial cells (BMECs). The role of adherens junctions in AD-related BBB dysfunction remains unclear. Exosomes from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. OBJECTIVE: This study aimed to investigate the impact of AD circulating exosomes on brain endothelial dysfunction. METHODS: Exosomes were isolated from sera of AD patients and age- and sex-matched cognitively normal controls using size-exclusion chromatography. The study measured the biomechanical nature of BMECs' endothelial barrier, the lateral binding forces between live BMECs. Paracellular expressions of the key adherens junction protein vascular endothelial (VE)-cadherin were visualized in BMEC cultures and a 3D BBB model using human BMECs and pericytes. VE-cadherin signals were also examined in brain tissues from AD patients and normal controls. RESULTS: Circulating exosomes from AD patients reduced VE-cadherin expression levels and impaired barrier function in recipient BMECs. Immunostaining analysis demonstrated that AD exosomes damaged VE-cadherin integrity in a 3D microvascular tubule formation model. The study found that AD exosomes weakened BBB integrity depending on their RNA content. Additionally, diminished microvascular VE-cadherin expression was observed in AD brains compared to controls. CONCLUSION: These findings highlight the significant role of circulating exosomes from AD patients in damaging adherens junctions of recipient BMECs, dependent on exosomal RNA.


Subject(s)
Alzheimer Disease , Exosomes , Humans , Endothelial Cells , Brain/blood supply , Blood-Brain Barrier , Cadherins , RNA
12.
Aging Cell ; 22(10): e13955, 2023 10.
Article in English | MEDLINE | ID: mdl-37584418

ABSTRACT

Inflammatory protein biomarkers induced by immune responses have been associated with cognitive decline and the pathogenesis of Alzheimer's disease (AD). Here, we investigate associations between a panel of inflammatory biomarkers and cognitive function and incident dementia outcomes in the well-characterized Framingham Heart Study Offspring cohort. Participants aged ≥40 years and dementia-free at Exam 7 who had a stored plasma sample were selected for profiling using the OLINK proteomics inflammation panel. Cross-sectional associations of the biomarkers with cognitive domain scores (N = 708, 53% female, 22% apolipoprotein E (APOE) ε4 carriers, 15% APOE ε2 carriers, mean age 61) and incident all-cause and AD dementia during up to 20 years of follow-up were tested. APOE genotype-stratified analyses were performed to explore effect modification. Higher levels of 12 and 3 proteins were associated with worse executive function and language domain factor scores, respectively. Several proteins were associated with more than one cognitive domain, including IL10, LIF-R, TWEAK, CCL19, IL-17C, MCP-4, and TGF-alpha. Stratified analyses suggested differential effects between APOE ε2 and ε4 carriers: most ε4 carrier associations were with executive function and memory domains, whereas most ε2 associations were with the visuospatial domain. Higher levels of TNFB and CDCP1 were associated with higher risks of incident all-cause and AD dementia. Our study found that TWEAK concentration was associated both with cognitive function and risks for AD dementia. The association of these inflammatory biomarkers with cognitive function and incident dementia may contribute to the discovery of therapeutic interventions for the prevention and treatment of cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Male , Apolipoprotein E2 , Cross-Sectional Studies , Genotype , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Cognition , Apolipoproteins E/genetics , Cognitive Dysfunction/genetics , Apolipoprotein E4 , Longitudinal Studies , Biomarkers , Antigens, Neoplasm , Cell Adhesion Molecules
14.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066187

ABSTRACT

Background: Blood-brain barrier (BBB) breakdown is a component of the progression and pathology of Alzheimer's disease (AD). BBB dysfunction is primarily caused by reduced or disorganized tight junction or adherens junction proteins of brain microvascular endothelial cell (BMEC). While there is growing evidence of tight junction disruption in BMECs in AD, the functional role of adherens junctions during BBB dysfunction in AD remains unknown. Exosomes secreted from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. Objectives: This study aimed to investigate the potential roles of AD circulating exosomes and their RNA cargos in brain endothelial dysfunction in AD. Methods: We isolated exosomes from sera of five cases of AD compared with age- and sex-matched cognitively normal controls using size-exclusion chromatography technology. We validated the qualities and particle sizes of isolated exosomes with nanoparticle tracking analysis and atomic force microscopy. We measured the biomechanical natures of the endothelial barrier of BMECs, the lateral binding forces between live BMECs, using fluidic force miscopy. We visualized the paracellular expressions of the key adherens junction protein VE-cadherin in BMEC cultures and a 3D BBB model that employs primary human BMECs and pericytes with immunostaining and evaluated them using confocal microscopy. We also examined the VE-cadherin signal in brain tissues from five cases of AD and five age- and sex-matched cognitively normal controls. Results: We found that circulating exosomes from AD patients suppress the paracellular expression levels of VE-cadherin and impair the barrier function of recipient BMECs. Immunostaining analysis showed that AD circulating exosomes damage VE-cadherin integrity in a 3D model of microvascular tubule formation. We found that circulating exosomes in AD weaken the BBB depending on the RNA cargos. In parallel, we observed that microvascular VE-cadherin expression is diminished in AD brains compared to normal controls. Conclusion: Using in vitro and ex vivo models, our study illustrates that circulating exosomes from AD patients play a significant role in mediating the damage effect on adherens junction of recipient BMEC of the BBB in an exosomal RNA-dependent manner. This suggests a novel mechanism of peripheral senescent exosomes for AD risk.

15.
J Cereb Blood Flow Metab ; 43(7): 1027-1041, 2023 07.
Article in English | MEDLINE | ID: mdl-37051650

ABSTRACT

Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and ß-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Signal Transduction , Transendothelial and Transepithelial Migration
16.
Neurobiol Aging ; 127: 33-42, 2023 07.
Article in English | MEDLINE | ID: mdl-37043881

ABSTRACT

This study longitudinally examined participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) who underwent a conversion in amyloid-beta (Aß) status in comparison to a group of ADNI participants who did not show a change in amyloid status over the same follow-up period. Participants included 136 ADNI dementia-free participants with 2 florbetapir positron emission tomography (PET) scans. Of these participants, 68 showed amyloid conversion as measured on florbetapir PET, and the other 68 did not. Amyloid converters and non-converters were chosen to have representative demographic data (age, education, sex, diagnostic status, and race). The amyloid converter group showed increased prevalence of APOE ε4 (p < 0.001), greater annualized percent volume loss in selected magnetic resonance imaging (MRI) regions (p < 0.05), lower cerebrospinal fluid Aß1-42 (p < 0.001), and greater amyloid retention (as measured by standard uptake value ratios) on florbetapir PET scans (p < 0.001) in comparison to the non-converter group. These results provide compelling evidence that important neuropathological changes are occurring alongside amyloid conversion.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Aniline Compounds , Ethylene Glycols , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography/methods , Cognitive Dysfunction/pathology , Amyloid , Brain/metabolism
17.
Neurobiol Aging ; 127: 54-69, 2023 07.
Article in English | MEDLINE | ID: mdl-37060729

ABSTRACT

C-reactive protein (CRP) impacts apolipoprotein E4 (ApoE4) allele to increase Alzheimer's disease (AD) risk. However, it is unclear how the ApoE protein and its binding to LRP1 are involved. We found that ApoE2 carriers had the highest but ApoE4 carriers had the lowest concentrations of blood ApoE in both humans and mice; blood ApoE concentration was negatively associated with AD risk. Elevation of peripheral monomeric CRP (mCRP) reduced the expression of ApoE in ApoE2 mice, while it decreased ApoE-LRP1 binding in the brains of ApoE4 mice that was characterized by Proximity Ligation Assay. Both serum ApoE and brain ApoE-LRP1 binding were positively associated with the expression of pericytes that disappeared after mCRP treatment, and negatively associated with brain tauopathy and neuroinflammation in the presence of mCRP. In ApoE-/- mice, mCRP reduced the brain expression levels of synaptophysin and PSD95 and the positive relationship between ApoE-LRP1 binding and synaptophysin or PSD95 expression disappeared. Our study suggests that blood ApoE protects against AD pathogenesis by binding to LRP1 during peripheral chronic inflammation.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2 , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Synaptophysin/metabolism , Apolipoproteins E/metabolism , Brain/metabolism , Inflammation/metabolism , Apolipoprotein E3/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism
18.
Aging (Albany NY) ; 15(10): 3939-3966, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116193

ABSTRACT

Understanding the composition of circulating immune cells with aging and the underlying biologic mechanisms driving aging may provide molecular targets to slow the aging process and reduce age-related disease. Utilizing cryopreserved cells from 996 Framingham Heart Study (FHS) Offspring Cohort participants aged 40 and older (mean 62 years, 48% female), we report on 116 immune cell phenotypes including monocytes, T-, B-, and NK cells and their subtypes, across age groups, sex, cytomegalovirus (CMV) exposure groups, smoking and other cardiovascular risk factors. The major cellular differences with CMV exposure were higher Granzyme B+ cells, effector cells, and effector-memory re-expressing CD45RA (TEMRA) cells for both CD4+ and CD8+. Older age was associated with lower CD3+ T cells, lower naïve cells and naïve/memory ratios for CD4+ and CD8+. We identified many immune cell differences by sex, with males showing lower naïve cells and higher effector and effector memory cells. Current smokers showed lower pro-inflammatory CD8 cells, higher CD8 regulatory type cells and altered B cell subsets. No significant associations were seen with BMI and other cardiovascular risk factors. Our cross-sectional observations of immune cell phenotypes provide a reference to further the understanding of the complexity of immune cells in blood, an easily accessible tissue.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Male , Humans , Female , Cross-Sectional Studies , CD8-Positive T-Lymphocytes , Phenotype , Longitudinal Studies , Smoking , CD4-Positive T-Lymphocytes
19.
Alzheimers Dement ; 19(6): 2677-2696, 2023 06.
Article in English | MEDLINE | ID: mdl-36975090

ABSTRACT

INTRODUCTION: At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS: The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION: This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Microglia/pathology , Inflammation , Apolipoproteins E/genetics
20.
medRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711847

ABSTRACT

Cerebrovascular damage coexists with Alzheimer's disease (AD) pathology and increases AD risk. However, it is unclear whether endothelial progenitor cells reduce AD risk via cerebrovascular repair. By using the Framingham Heart Study (FHS) offspring cohort, which includes data on different progenitor cells, the incidence of AD dementia, peripheral and cerebrovascular pathologies, and genetic data (n = 1,566), we found that elevated numbers of circulating endothelial progenitor cells with CD34+CD133+ co-expressions had a dose-dependent association with decreased AD risk (HR = 0.67, 95% CI: 0.46-0.96, p = 0.03) after adjusting for age, sex, years of education, and APOE ε4. With stratification, this relationship was only significant among those individuals who had vascular pathologies, especially hypertension (HTN) and cerebral microbleeds (CMB), but not among those individuals who had neither peripheral nor central vascular pathologies. We applied a genome-wide association study (GWAS) and found that the number of CD34+CD133+ cells impacted AD risk depending on the homozygous genotypes of two genes: KIRREL3 rs580382 CC carriers (HR = 0.31, 95% CI: 0.17-0.57, p<0.001), KIRREL3 rs4144611 TT carriers (HR = 0.29, 95% CI: 0.15-0.57, p<0.001), and EXOC6B rs61619102 CC carriers (HR = 0.49, 95% CI: 0.31-0.75, p<0.001) after adjusting for confounders. In contrast, the relationship did not exist in their counterpart genotypes, e.g. KIRREL3 TT/CT or GG/GT carriers and EXOC6B GG/GC carriers. Our findings suggest that circulating CD34+CD133+ endothelial progenitor cells can be therapeutic in reducing AD risk in the presence of cerebrovascular pathology, especially in KIRREL3 and EXOC6B genotype carriers.

SELECTION OF CITATIONS
SEARCH DETAIL