Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37104043

ABSTRACT

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Animals , Mice , COVID-19/genetics , COVID-19/pathology , Extracellular Traps/metabolism , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Lung/pathology , Complement C5a/genetics , Complement C5a/metabolism
2.
Cell Death Dis ; 13(5): 500, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614037

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) and hypersensitivity reactions (HSRs) are among the most frequent and impairing side effects of the antineoplastic agent paclitaxel. Here, we demonstrated that paclitaxel can bind and activate complement component 5a receptor 1 (C5aR1) and that this binding is crucial in the etiology of paclitaxel-induced CIPN and anaphylaxis. Starting from our previous data demonstrating the role of interleukin (IL)-8 in paclitaxel-induced neuronal toxicity, we searched for proteins that activate IL-8 expression and, by using the Exscalate platform for molecular docking simulations, we predicted the high affinity of C5aR1 with paclitaxel. By in vitro studies, we confirmed the specific and competitive nature of the C5aR1-paclitaxel binding and found that it triggers intracellularly the NFkB/P38 pathway and c-Fos. In F11 neuronal cells and rat dorsal root ganglia, C5aR1 inhibition protected from paclitaxel-induced neuropathological effects, while in paclitaxel-treated mice, the absence (knock-out mice) or the inhibition of C5aR1 significantly ameliorated CIPN symptoms-in terms of cold and mechanical allodynia-and reduced the chronic pathological state in the paw. Finally, we found that C5aR1 inhibition can counteract paclitaxel-induced anaphylactic cytokine release in macrophages in vitro, as well as the onset of HSRs in mice. Altogether these data identified C5aR1 as a key mediator and a new potential pharmacological target for the prevention and treatment of CIPN and HSRs induced by paclitaxel.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Animals , Antineoplastic Agents/toxicity , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Mice , Molecular Docking Simulation , Paclitaxel , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Rats , Receptor, Anaphylatoxin C5a/therapeutic use
3.
Nat Neurosci ; 25(2): 168-179, 2022 02.
Article in English | MEDLINE | ID: mdl-34931070

ABSTRACT

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.


Subject(s)
Anthrax , Bacillus anthracis , Bacterial Toxins , Induced Pluripotent Stem Cells , Animals , Anthrax/microbiology , Anthrax/therapy , Bacillus anthracis/metabolism , Bacterial Toxins/metabolism , Ganglia, Spinal/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Nociceptors/metabolism , Pain , Receptors, Peptide/metabolism
4.
Pain ; 161(8): 1730-1743, 2020 08.
Article in English | MEDLINE | ID: mdl-32701834

ABSTRACT

The inflammatory/immune response at the site of peripheral nerve injury participates in the pathophysiology of neuropathic pain. Nevertheless, little is known about the local regulatory mechanisms underlying peripheral nerve injury that counteracts the development of pain. Here, we investigated the contribution of regulatory T (Treg) cells to the development of neuropathic pain by using a partial sciatic nerve ligation model in mice. We showed that Treg cells infiltrate and proliferate in the site of peripheral nerve injury. Local Treg cells suppressed the development of neuropathic pain mainly through the inhibition of the CD4 Th1 response. Treg cells also indirectly reduced neuronal damage and neuroinflammation at the level of the sensory ganglia. Finally, we identified IL-10 signaling as an intrinsic mechanism by which Treg cells counteract neuropathic pain development. These results revealed Treg cells as important inhibitory modulators of the immune response at the site of peripheral nerve injury that restrains the development of neuropathic pain. In conclusion, the boosting of Treg cell function/activity might be explored as a possible interventional approach to reduce neuropathic pain development after peripheral nerve damage.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , T-Lymphocytes, Regulatory , Animals , Hyperalgesia , Mice , Mice, Inbred C57BL , Peripheral Nerve Injuries/complications , Sciatic Nerve , Th1 Cells
5.
Pharmacol Res ; 112: 58-67, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26855316

ABSTRACT

Pain is a distressing sensation, resulting from real or potential tissue damage. It is crucial to protect our body, but it can be so intense that it requires treatment. Furthermore, in some circumstances, pain can become persistent/chronic, such as that triggered by inflammatory disease or neuropathy. Treatments for pain are still a clinical challenge. An advance in the knowledge of the neurobiological mechanisms involved in the genesis of acute and chronic pain might be the fundamental approach for developing novel classes of analgesic drugs. In this context, there is emerging evidence indicating that C5a, a component of the complement system, and its cell membrane receptor, C5aR, play a critical role in the genesis of acute and chronic pain states. Thus, this review will describe the mechanisms by which C5a/C5aR signaling participates in the cascade of events involved in the pathophysiology of acute (postoperative), inflammatory and neuropathic pain states. Furthermore, it will also highlight the current possibilities for the development of a novel class of analgesic drugs that target C5a/C5aR signaling.


Subject(s)
Analgesics , Chronic Pain/drug therapy , Complement C5a/antagonists & inhibitors , Complement C5a/metabolism , Neuralgia/drug therapy , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/metabolism , Acute Pain/drug therapy , Acute Pain/physiopathology , Analgesics/immunology , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Cell Membrane/drug effects , Chronic Pain/physiopathology , Complement Activation/drug effects , Complement C5a/immunology , Complement C5a/pharmacology , Drug Discovery , Humans , Inflammation/drug therapy , Molecular Targeted Therapy , Neuralgia/physiopathology , Pain, Postoperative/drug therapy , Pain, Postoperative/physiopathology , Receptor, Anaphylatoxin C5a/immunology , Signal Transduction/drug effects
6.
Sci Rep ; 5: 14648, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26511791

ABSTRACT

The assessment of articular nociception in experimental animals is a challenge because available methods are limited and subject to investigator influence. In an attempt to solve this problem, the purpose of this study was to establish the use of dynamic weight bearing (DWB) as a new device for evaluating joint nociception in an experimental model of antigen-induced arthritis (AIA) in mice. AIA was induced in Balb/c and C57BL/6 mice, and joint nociception was evaluated by DWB. Western Blotting and real-time PCR were used to determine protein and mRNA expression, respectively. DWB detected a dose- and time-dependent increase in joint nociception during AIA and was able to detect the dose-response effects of different classes of analgesics. Using DWB, it was possible to evaluate the participation of spinal glial cells (microglia and astrocytes) and cytokines (IL-1ß and TNFα) for the genesis of joint nociception during AIA. In conclusion, the present results indicated that DWB is an effective, objective and predictable test to study both the pathophysiological mechanisms involved in arthritic nociception in mice and for evaluating novel analgesic drugs against arthritis.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Experimental/physiopathology , Astrocytes/immunology , Microglia/immunology , Nociception , Analgesics/pharmacology , Animals , Arthritis, Experimental/pathology , Astrocytes/pathology , Interleukin-1beta/immunology , Male , Mice , Mice, Inbred BALB C , Microglia/pathology , Tumor Necrosis Factor-alpha/immunology , Weight-Bearing
7.
Blood Coagul Fibrinolysis ; 21(7): 653-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20683323

ABSTRACT

Previous studies have shown that venoms of social wasps and bees exhibit strong anticoagulant activity. The present study describes the anticoagulant and fibrinogen-degrading pharmacological properties of the venom of Polybia occidentalis social wasp. The results demonstrated that this venom presented anticoagulant effect, inhibiting the coagulation at different steps of the clotting pathway (intrinsic, extrinsic and common pathway). The venom inhibited platelet aggregation and degraded plasma fibrinogen, possibly containing metal-dependent metalloproteases that specifically cleave the Bß-chain of fibrinogen. In conclusion, fibrinogenolytic and anticoagulant properties of this wasp venom find a potential application in drug development for the treatment of thrombotic disorders. For that, further studies should be carried out in order to identify and isolate the active compounds responsible for these effects.


Subject(s)
Blood Coagulation/drug effects , Fibrinogen/metabolism , Wasp Venoms/pharmacology , Animals , Anticoagulants/pharmacology , Humans , Metalloproteases/pharmacology , Platelet Aggregation/drug effects , Wasps
SELECTION OF CITATIONS
SEARCH DETAIL
...