Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 126(46): 9632-9642, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36378255

ABSTRACT

Dendrimers are branched macromolecules that can be functionalized with a large variety of chemical moieties. Dendrimers can therefore be specifically designed to interact with target molecules. Although tailored dendrimers hold promise for targeted drug delivery and wastewater cleanup, these applications require more detailed and systematic studies on how dendrimer-guest interactions depend on environmental conditions. In light of this need, we studied pH-dependent interactions between fluorescein and poly(amidoamine) dendrimers with three different terminal groups. Crucially, both fluorescein and dendrimers have multiple protonation equilibria, which can enable interactions in different pH windows through various possible mechanisms. Such interactions are studied through UV-vis and fluorescence spectroscopies, which reveal a redshift that occurs upon fluorescein-dendrimer binding. The resulting pH-dependent spectra are complex but can be analyzed quantitatively with an open-source mathematical protocol. Consequently, we show that fluorescein binds across four pH units with amine-terminated dendrimers, across two units with hydroxyl-terminated dendrimers and does not interact attractively with carboxyl-terminated dendrimers. These functionalization-dependent host-guest interactions stabilize fluorescein's dianionic form and are predominantly electrostatically driven, with likely auxiliary hydrogen and CH-π bonding. Notably, these auxiliary mechanisms appear too weak to drive dendrimer-fluorescein interactions on their own. Overall, this work yields valuable insights into dendrimer-fluorescein association and provides a readily reproducible framework for studying host-guest interactions.


Subject(s)
Dendrimers , Dendrimers/chemistry , Fluorescein , Polyamines/chemistry , Hydrogen-Ion Concentration
2.
Chem Sci ; 13(9): 2764-2777, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35356676

ABSTRACT

The strength of autocatalytic reactions lies in their ability to provide a powerful means of molecular amplification, which can be very useful for improving the analytical performances of a multitude of analytical and bioanalytical methods. However, one of the major difficulties in designing an efficient autocatalytic amplification system is the requirement for reactants that are both highly reactive and chemically stable in order to avoid limitations imposed by undesirable background amplifications. In the present work, we devised a reaction network based on a redox cross-catalysis principle, in which two catalytic loops activate each other. The first loop, catalyzed by H2O2, involves the oxidative deprotection of a naphthylboronate ester probe into a redox-active naphthohydroquinone, which in turn catalyzes the production of H2O2 by redox cycling in the presence of a reducing enzyme/substrate couple. We present here a set of new molecular probes with improved reactivity and stability, resulting in particularly steep sigmoidal kinetic traces and enhanced discrimination between specific and nonspecific responses. This translates into the sensitive detection of H2O2 down to a few nM in less than 10 minutes or a redox cycling compound such as the 2-amino-3-chloro-1,4-naphthoquinone down to 50 pM in less than 30 minutes. The critical reason leading to these remarkably good performances is the extended stability stemming from the double masking of the naphthohydroquinone core by two boronate groups, a counterintuitive strategy if we consider the need for two equivalents of H2O2 for full deprotection. An in-depth study of the mechanism and dynamics of this complex reaction network is conducted in order to better understand, predict and optimize its functioning. From this investigation, the time response as well as detection limit are found to be highly dependent on pH, nature of the buffer, and concentration of the reducing enzyme.

3.
ACS Sens ; 6(5): 1956-1962, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33885282

ABSTRACT

The effect of serum on electrochemical detection of bioassays having silver nanoparticle (AgNP) detection labels was investigated. Both a model assay and an antigen-specific sandwich bioassay for the heart failure marker NT-proBNP were examined. In both cases, the AgNP labels were conjugated to a detection antibody. Electrochemical detection was carried out using a galvanic exchange/anodic stripping voltammetry method in which Au3+ exchanges with AgNP labels. The assays were carried out using a paper-based electrode platform. The bioassays were exposed to different serum conditions prior to and during detection. There are three important outcomes reported in this article. First, both the model- and antigen-specific assays could be formed in undiluted serum with no detectable interferences from the serum components. Second, to achieve the maximum possible electrochemical signal, the highest percentage of serum that can remain in an assay buffer during electrochemical detection is 0.25% when no washing is performed. The assay results are rendered inaccurate when 0.50% or more of serum is present. Third, the factors inhibiting galvanic exchange in serum probably relate to surface adsorption of biomolecules onto the AgNP labels, chelation of Au3+ by serum components, or both. The results reported here provide general guidance for using metal NP labels for electrochemical assays in biofluids.


Subject(s)
Metal Nanoparticles , Silver , Antibodies , Biological Assay , Electrodes
4.
ACS Sens ; 6(3): 1111-1119, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33439628

ABSTRACT

Here, we report on the use of 40 ± 4 nm silver nanocubes (AgNCs) as electrochemical labels in bioassays. The model metalloimmunoassay combines galvanic exchange (GE) and anodic stripping voltammetry (ASV). The results show that a lower limit of detection is achieved by simply changing the shape of the Ag label yielding improved GE with AgNCs when compared to GE with spherical silver nanoparticles (sAgNPs). Specifically, during GE between electrogenerated Au3+ and the Ag labels, a thin shell of Au forms on the surface of the NP. This shell is more porous when GE proceeds on AgNCs compared to sAgNPs, and therefore, more exchange occurs when using AgNCs. ASV results show that the Ag collection efficiency (AgCE%) is increased by up to ∼57% when using AgNCs. When the electrochemical system is fully optimized, the limit of detection is 0.1 pM AgNCs, which is an order of magnitude lower than that of sAgNP labels.


Subject(s)
Metal Nanoparticles , Silver , Biological Assay , Electrodes
5.
ACS Sens ; 5(3): 853-860, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32154707

ABSTRACT

In this paper, we demonstrate an electrochemical method for detection of the heart failure biomarker, N-terminal prohormone brain natriuretic peptide (NT-proBNP). The approach is based on a paper electrode assembly and a metalloimmunoassay; it is intended for eventual integration into a home-use sensor. Sensing of NT-proBNP relies on the formation of a sandwich immunoassay and electrochemical quantification of silver nanoparticle (AgNP) labels attached to the detection antibodies (Abs). There are four important outcomes reported in this article. First, compared to physisorption of the detection Abs on the AgNP labels, a 27-fold increase in signal is observed when a heterobifunctional cross-linker is used to facilitate this labeling. Second, the assay is selective in that it does not cross-react with other cardiac natriuretic peptides. Third, the assay forms in undiluted human serum (though the electrochemical analysis is carried out in buffer). Finally, and most important, the assay is able to detect NT-proBNP at concentrations between 0.58 and 2.33 nM. This performance approaches the critical NT-proBNP concentration threshold often used by physicians for risk stratification purposes: ∼0.116 nM.


Subject(s)
Electrochemical Techniques , Natriuretic Peptide, Brain/analysis , Peptide Fragments/analysis , Antibodies/chemistry , Electrodes , Humans , Immunoassay , Metal Nanoparticles/chemistry , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/immunology , Paper , Peptide Fragments/blood , Peptide Fragments/immunology , Silver/chemistry
6.
Bioconjug Chem ; 30(12): 3078-3086, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31730333

ABSTRACT

Here we report on the use of heterobifunctional cross-linkers (HBCLs) to control the number, orientation, and activity of immunoglobulin G antibodies (Abs) conjugated to silver nanoparticles (AgNPs). A hydrazone conjugation method resulted in exclusive modification of the polysaccharide chains present on the fragment crystallizable region of the Abs, leaving the antigen-binding regions accessible. Two HBCLs, each having a hydrazide terminal group, were synthesized and tested for effectiveness. The two HBCLs differed in two respects, however: (1) either a thiol or a dithiolane group was used for attachment to the AgNP; and (2) the spacer arm was either a PEG chain or an alkyl chain. Both cross-linkers immobilized 5 ± 1 Abs on the surface of each 20-nm-diameter AgNP. Electrochemical results, obtained using a half-metalloimmunoassay, proved that Abs conjugated to AgNPs via either of the two HBCLs were 4 times more active than those conjugated by the more common physisorption technique. This finding confirmed that the HBCLs exerted orientational control over the Abs. We also demonstrated that the AgNP-HBCL-Ab conjugates were stable and active for at least 2 weeks. Finally, we found that the stability of the HBCLs themselves was related to the nature of their spacer arms. Specifically, the results showed that the HBCL having the alkyl chain is chemically stable for at least 90 days, making it the preferred cross-linker for bioassays.


Subject(s)
Antibodies/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Cross-Linking Reagents/chemistry , Drug Stability , Immunoglobulin G , Sulfhydryl Compounds/chemistry
7.
Chemistry ; 25(31): 7534-7546, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-30809849

ABSTRACT

Herein, a new molecular autocatalytic reaction scheme based on a H2 O2 -mediated deprotection of a boronate ester probe into a redox cycling compound is described, generating an exponential signal gain in the presence of O2 and a reducing agent or enzyme. For such a purpose, new chemosensing probes built around a naphthoquinone/naphthohydroquinone redox-active core, masked by a self-immolative boronic ester protecting group, were designed. With these probes, typical autocatalytic kinetic traces with characteristic lags and exponential phases were obtained by using either UV/Visible or fluorescence optical detection, or by using electrochemical monitoring. Detection of concentrations as low as 0.5 µm H2 O2 and 0.5 nm of a naphthoquinone derivative were achieved in a relatively short time (<1 h). From kinetic analysis of the two cross-activated catalytic loops associated with the autocatalysis, the key parameters governing the autocatalytic reaction network were determined, indirectly showing that the analytical performances are currently limited by the slow nonspecific self-deprotection of boronate probes. Collectively, the present results demonstrate the potential of this new exponential molecular amplification strategy, which, owing to its generic nature and modularity, is quite promising for coupling to a wide range of bioassays involving H2 O2 or redox cycling compounds, or for use as a new building block in the development of more complex chemical reaction networks.

8.
Langmuir ; 35(9): 3363-3371, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30802061

ABSTRACT

We are interested in functionalizing gold nanoparticles (AuNPs) with proteins using a biomimetic approach in which an intermediate peptide "glue" directs the orientation of a protein relative to the AuNP surface. The first step toward this goal is described in the present article. Specifically, we show that ∼5 nm AuNPs can be functionalized with a mixed self-assembled monolayer (SAM) consisting of oligo(ethylene glycol) alkanethiols terminated with either hydroxyl or azide groups, and that the resulting materials are stable and soluble in water. The azide groups on the surface of the AuNPs can be subsequently linked to alkyne-functionalized peptides via a copper-catalyzed azide-alkyne cycloaddition (click) reaction. Analysis of the resulting material by Fourier transform infrared and circular dichroism spectroscopy demonstrates that the peptide is covalently linked to the SAM and that it exists in an α-helical conformation. In addition to our intended purpose of using these highly structured, biomimetic materials to orient proteins, they may also be useful for applications involving interactions between nanoparticles and cells.


Subject(s)
Immobilized Proteins/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Alkynes/chemistry , Amino Acid Sequence , Azides/chemistry , Biomimetics/methods , Click Chemistry , Copper/chemistry , Cycloaddition Reaction , Gold/chemistry , Protein Conformation, alpha-Helical
SELECTION OF CITATIONS
SEARCH DETAIL