Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 25(6): 141, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898204

ABSTRACT

Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.


Subject(s)
Colorectal Neoplasms , Drug Delivery Systems , Lactic Acid , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Silybin , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Silybin/administration & dosage , Silybin/pharmacology , Silybin/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Nanoparticles/chemistry , Lactic Acid/chemistry , Drug Delivery Systems/methods , Silymarin/chemistry , Silymarin/administration & dosage , Silymarin/pharmacology , Drug Carriers/chemistry , Cell Line, Tumor , Polyglycolic Acid/chemistry , Particle Size , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/administration & dosage , Cell Survival/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Solubility , HT29 Cells , Drug Liberation , Calorimetry, Differential Scanning/methods
2.
Adv Pharm Bull ; 14(1): 161-175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585452

ABSTRACT

Purpose: Spironolactone (SPN), which is classified as an anti-androgen, has demonstrated efficacy in treating acne. This study aimed to utilize ultrasonication to create a chitosan-coated nano lipid carrier (NLC) for enhancing the delivery of SPN to the skin and treating acne. Methods: Various hydrophilic-lipophilic balance (HLB) values were investigated to optimize the SPN-NLCs. Photon correlation spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC) were employed to characterize the solid state of SPN in nanoparticle form. Additionally, the optimized formulation was used in a double-blind, randomized clinical trial. Results: Reducing the HLB of the surfactant mixtures resulted in a reduction in the size of SPNNLCs. The formula with the smallest particle diameter (238.4±0.74 nm) and the lowest HLB value (9.65) exhibited the highest encapsulation efficiency (EE) of 79.88±1.807%. Coating the optimized SPN-NLC with chitosan increased the diameter, polydispersity index (PDI), zeta potential (ZP), and EE. In vitro skin absorption studies demonstrated sustained release profiles for chitosan-coated SPN-NLC. In the double-blind trial, a gel containing chitosan-coated SPN-NLC effectively treated mild to moderate acne vulgaris, leading to improved healing and reduced lesion count after 8 weeks of therapy compared to the placebo. It successfully addressed both non-inflammatory and inflammatory lesions without adverse effects on the skin. Conclusion: The findings indicate that chitosan-coated SPN-NLCs have the potential as nanoparticles for targeted SPN delivery to the skin, offering novel options for the treatment of acne vulgaris.

3.
J Biomater Sci Polym Ed ; 35(7): 967-988, 2024 05.
Article in English | MEDLINE | ID: mdl-38340313

ABSTRACT

The possibility of controlling periorbital hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. In the current investigation, 1% vitamin K (Vit K) was incorporated into a Chitosan/alginate hydrogel which aimed to increase the dermal delivery and anti-pigmentation effect. The Vit K-hydrogel was evaluated using several different tests, including volume expansion/contraction analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), ultraviolet (UV) absorbance spectroscopy, and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Vit K hydrogel's drug release profile showed a steady increase over time. Furthermore, the modified Vit K hydrogel formulations showed no harmful effects in an in vitro cytotoxicity study. The Vit K hydrogel was tested for dermal irritation on Wistar rats, and the hydrogel was found to be non-irritating. Furthermore, Vit K-hydrogel inhibited melanin formation (31.76 ± 1.14%) and was remarkably higher than free Vit K. In addition, Vit K-hydrogel inhibited L-dopa auto-oxidation to a greater extent (94.80 ± 2.41%) in comparison with Vit K solution (73.95 ± 1.62%). Vit K-hydrogel enhanced percutaneous transport of Vit K, according to in vitro percutaneous absorption findings, suggesting that this innovative formulation may provide new therapeutic options for periorbital hyperpigmentation.


Subject(s)
Alginates , Chitosan , Hydrogels , Hyperpigmentation , Rats, Wistar , Chitosan/chemistry , Animals , Alginates/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hyperpigmentation/drug therapy , Rats , Drug Liberation , Drug Carriers/chemistry , Vitamin K 1/chemistry , Vitamin K 1/administration & dosage , Vitamin K 1/pharmacology , Melanins/chemistry , Skin/drug effects , Skin/metabolism , Humans , Male
4.
J Biomater Sci Polym Ed ; 35(1): 63-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804323

ABSTRACT

In the present study, an ionic gelation and ultrasonic approach was performed to produce kojic acid (KA) loaded chitosan(CS)/collagen(CN) nanoparticle(NP) (CSCN-NP) which aimed to increase the dermal delivery and anti-pigmentation effect. To optimize the CSCN-NP the effect of the amount of CN was investigated. The results showed that increasing CN from 0 to 500 mg increased the mean particle size and entrapment efficiency of KA-CSCN-NP from 266.07 ± 9.30 nm to 404.23 ± 9.44 nm and 17.37 ± 2.06% to 82.34 ± 2.16%, respectively. Differential scanning calorimetry confirmed the amorphous form of KA in CSCN-NP, while scanning electron microscopy revealed that the nanoparticles were spherical. There was no chemical interaction between KA and the other components base on attenuated total reflectance-Fourier transform infrared spectroscopy. The skin permeability test showed that KA-CSCN-NP gel delivered more KA to the dermal layers (29.16 ± 1.67% or 537.26 ± 537.26 µg/cm2) and receiver compartment (15.04 ± 1.47% or 277.15 ± 27.22 µg/cm2) compared to KA plain gel. In vitro cytotoxicity assay demonstrated that the improved KA-CSCN-NP was non-toxic. Dermal irritating test on Wistar rats showed that the KA gel was non-irritating. Furthermore, KA-CSCN-NP was found to inhibit melanin formation to a greater extent than free KA and significantly inhibited L-dopa auto-oxidation (94.80 ± 2.41%) compared to pure kojic acid solution (75.28 ± 3.22%). The observations of this study revealed that the produced KA-CSCN-NP might be used as a potential nano-vehicle for KA dermal administration, thereby opening up innovative options for the management of hyper-melanogenesis problems.


Subject(s)
Chitosan , Nanoparticles , Rats , Animals , Chitosan/chemistry , Rats, Wistar , Nanoparticles/chemistry , Collagen , Particle Size
5.
J Biomater Sci Polym Ed ; 34(14): 1952-1980, 2023 10.
Article in English | MEDLINE | ID: mdl-37036014

ABSTRACT

In the current study, an ultrasonic approach (as green method) was utilized to prepared kojic acid niosome (kojisome) which aimed to increase the dermal delivery and improving anti-melanogenesis properties. The study's findings demonstrated that increasing cholesterol enhanced the mean particle size from 68.333 ± 5.686 nm to 325.000 ± 15.099 nm and entrapment efficiency 0% to 39.341 ± 4.126% of the kojisome. Cholesterol may enhance the number and rigidity of bilayers that induced a size enhancement and entrapment efficiency. The skin permeability test revealed that kojisome gel had more kojic acid in dermal layers (437.563 ± 29.857 µg/cm2 or 16.624 ± 1.379%) than kojic acid plain gel (161.290 ± 14.812 µg/cm2 or 6.128 ± 0.672%). The niosome's lipophilicity allowed for gradual penetration, possibly due to better contact with the skin layers. Also, the extended-release behavior of improved kojisome exhibited high safety profile and low side effect in In vitro cytotoxicity assay, dermal irritation test, and Histo-pathological evaluation. Furthermore, optimum kojisome inhibited melanin formation (53.093 ± 2.985% at 1000 µM) higher than free kojic acid (62.383 ± 1.958%) significantly (p < 0.05). In addition, Kojisome 6 inhibited L-dopa auto-oxidation greater extent (94.806 ± 2.411%) than pure kojic acid solution (72.953 ± 2.728%). Kojisome by delivering and targeting large amount of kojic acid on specific site causes high efficacy in inhibition of melanin synthesis. The observations of this study revealed that the produced kojisome might be used as a potential nano-vehicle for kojic acid dermal administration, thereby opening up innovative options for the treatment of hyperpigmentation problems.


Subject(s)
Antioxidants , Liposomes , Antioxidants/pharmacology , Melanins , Cholesterol
6.
J Biomater Sci Polym Ed ; 33(18): 2325-2352, 2022 12.
Article in English | MEDLINE | ID: mdl-35848460

ABSTRACT

Terbinafine (TER) is a promising candidate medication for the topical treatment of fungal infections. However, its solubility in water and skin permeability are limited. To overcome these limitations, a Terbinafine niosome and niosomal gel was developed. The impact of cholesterol:surfactants on terbinafine incorporated niosome (terbinasome) preparations was examined. Differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy were used to assess the morphological features of terbinasome and the physicochemical characteristics of TER in terbinasome. The obtained results has shown that Chol enhanced the diameter of the terbinasome from 123.20 ± 2.86 to 701.93 ± 17.72 nm. The highest encapsulation of terbinafine was estimated to be around 66% due to the cholesterol:surfactants ratio in the terbinasome was 1:3 and 1:6. Additional examination has revealed that changes in the cholesterol:surfactants ratio can result in a change in the PDI value of between 0.421 ± 0.004 and 0.712 ± 0.011. The terbinasome gel was prepared and tested for pharmaceutical testing, including pH, viscosity, spreadability, and stability. The percentage of TER dissolution from terbinasome were determined more than 80% and showed quickest drug release. In a cutaneous permeability examination, the quantity of TER in the cutaneous layers and the receiver compartment were higher for the terbinasome gel than for the TER simple gel. The terbinasome's cell viability was around 90% (HFF cell line) and MTT experiment demonstrated that the terbinasome was not cytotoxic. The MIC of the terbinasome was lower than pure drug against Aspergillus, Fusarium, and Trichophyton. The terbinasomal gels were non-irritant (score < 2) in the cutaneous irritation examination performed on Wistar rats. The research suggests that the optimized terbinasome may be used as a nano-vesicle for TER drug administration, hence opening up new possibilities for the treatment of cutaneous infections.


Subject(s)
Antifungal Agents , Liposomes , Animals , Rats , Terbinafine , Liposomes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Particle Size , Rats, Wistar , Gels/chemistry , Surface-Active Agents , Cholesterol/chemistry
7.
J Biomater Sci Polym Ed ; 33(17): 2270-2291, 2022 12.
Article in English | MEDLINE | ID: mdl-35856432

ABSTRACT

The local treatment of kojic acid (KA) as a tyrosinase inhibitor results in inadequate skin absorption and a number of side effects. The current study aims to maximize KA skin delivery. To produce KA-hydrogel, 1% KA was injected into a Chitosan/alginate hydrogel. The impacts of biopolymer proportion on the KA-hydrogel preparations were investigated. Swelling analysis, weight loss analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), UV absorption spectroscopy, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy were used to evaluate the KA-hydrogel. The swelling percentages of KA-hydrogel increased significantly after 4 h. After two weeks, up to 60% of the primary mass of the KA- hydrogel has been removed. By alternation in biopolymer proportion, the drug release profile of KA-hydrogel demonstrated a sustained pattern. According to the skin absorption experiment, KA-hydrogel had higher skin deposition (25.630 ± 3.350%) than KA-plain gel (5.170 ± 0.340%). Moreover, an in vitro cytotoxicity analysis for the modified KA-hydrogel preparations revealed no cytotoxic effects on HFF cell line (90%). Moreover, KA hydrogel had inhibitory effect on melanin synthesis and are comparable with KA. Furthermore, KA-hydrogel had higher inhibitory effect on L-dopa auto oxidation (94.84 ± 2.41%) in comparison KA solution (73.95 ± 3.28%). Also, the dermal irritation study on Wistar rat revealed that the hydrogel constituent used did not irritate the skin. These results revealed that the KA-hydrogel might be employed as KA local administration, thus opening up new prospects for the therapies of hyperpigmentation problems.


Subject(s)
Chitosan , Hydrogels , Rats , Animals , Hydrogels/chemistry , Rats, Wistar , Pyrones/pharmacology , Pyrones/chemistry , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...