Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Eukaryot Microbiol ; 70(6): e12999, 2023.
Article in English | MEDLINE | ID: mdl-37724511

ABSTRACT

Trypanosoma cruzi, the agent of Chagas disease, must adapt to a diversity of environmental conditions that it faces during its life cycle. The adaptation to these changes is mediated by signaling pathways that coordinate the cellular responses to the new environmental settings. Cyclic AMP (cAMP) and Calcium (Ca2+ ) signaling pathways regulate critical cellular processes in this parasite, such as differentiation, osmoregulation, host cell invasion and cell bioenergetics. Although the use of CRISPR/Cas9 technology prompted reverse genetics approaches for functional analysis in T. cruzi, it is still necessary to expand the toolbox for genome editing in this parasite, as for example to perform multigene analysis. Here we used an efficient T7RNAP/Cas9 strategy to tag and delete three genes predicted to be involved in cAMP and Ca2+ signaling pathways: a putative Ca2+ /calmodulin-dependent protein kinase (CAMK), Flagellar Member 6 (FLAM6) and Cyclic nucleotide-binding domain/C2 domain-containing protein (CC2CP). We endogenously tagged these three genes and determined the subcellular localization of the tagged proteins. Furthermore, the strategy used to knockout these genes allows us to presume that TcCC2CP is an essential gene in T. cruzi epimastigotes. Our results will open new venues for future research on the role of these proteins in T. cruzi.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Gene Editing/methods , CRISPR-Cas Systems/genetics , Chagas Disease/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
2.
bioRxiv ; 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37502958

ABSTRACT

Trypanosoma cruzi , the agent of Chagas disease, must adapt to a diversity of environmental conditions that it faces during its life cycle. The adaptation to these changes is mediated by signaling pathways that coordinate the cellular responses to the new environmental settings. Cyclic AMP (cAMP) and Calcium (Ca 2+ ) signaling pathways regulate critical cellular processes in this parasite, such as differentiation, osmoregulation, host cell invasion and cell bioenergetics. Although the use of CRISPR/Cas9 technology prompted reverse genetics approaches for functional analysis in T. cruzi , it is still necessary to expand the toolbox for genome editing in this parasite, as for example to perform multigene analysis. Here we used an efficient T7RNAP/Cas9 strategy to tag and delete three genes predicted to be involved in cAMP and Ca 2+ signaling pathways: a putative Ca 2+ /calmodulin-dependent protein kinase ( CAMK ), Flagellar Member 6 ( FLAM6 ) and Cyclic nucleotide-binding domain/C2 domain-containing protein ( CC2CP ). We endogenously tagged these three genes and determined the subcellular localization of the tagged proteins. Furthermore, the strategy used to knockout these genes allow us to presume that TcCC2CP is an essential gene in T. cruzi epimastigotes. Our results will open new venues for future research on the role of these proteins in T. cruzi .

3.
mBio ; 14(4): e0106423, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37477489

ABSTRACT

Trypanosoma cruzi is the etiologic agent of Chagas disease, a leading cause of disability and premature death in the Americas. This parasite spends its life between a triatomine insect and a mammalian host, transitioning between developmental stages in response to microenvironmental changes. Among the second messengers driving differentiation in T. cruzi, cAMP has been shown to mediate metacyclogenesis and response to osmotic stress, but this signaling pathway remains largely unexplored in this parasite. Adenylate cyclases (ACs) catalyze the conversion of ATP to cAMP. They comprise a multigene family encoding putative receptor-type ACs in T. cruzi. Using protein sequence alignment, we classified them into five groups and chose a representative member from each group to study their localization (TcAC1-TcAC5). We expressed an HA-tagged version of each protein in T. cruzi and performed immunofluorescence analysis. A peculiar dual localization of TcAC1 and TcAC2 was observed in the flagellar distal domain and in the contractile vacuole complex (CVC), and their enzymatic activity was confirmed by gene complementation in yeast. Furthermore, TcAC1 overexpressing parasites showed an increased metacyclogenesis, a defect in host cell invasion, and a reduced intracellular replication, highlighting the importance of this protein throughout T. cruzi life cycle. These mutants were more tolerant to hypoosmotic stress and showed a higher adhesion capacity during in vitro metacyclogenesis, whereas the wild-type phenotype was restored after disrupting TcAC1 localization. Finally, TcAC1 was found to interact with cAMP response protein 3 (TcCARP3), co-localizing with this protein in the flagellar tip and CVC. IMPORTANCE We identified three components of the cAMP signaling pathway (TcAC1, TcAC2, and TcCARP3) with dual localization in Trypanosoma cruzi: the flagellar distal domain and the CVC, structures involved in cell adhesion and osmoregulation, respectively. We found evidence on the role of TcAC1 in both cellular processes, as well as in metacyclogenesis. Our data suggest that TcACs act as signal sensors and transducers through cAMP synthesis in membrane microdomains. We propose a model in which TcACs sense the harsh conditions in the triatomine hindgut (nutrient deprivation, acidic pH, osmotic stress, ionic composition, hydrophobic interactions) and become active. Synthesis of cAMP then triggers cell adhesion prior completion of metacyclogenesis, while mediating a response to osmotic stress in the parasite. These results shed light into the mechanisms driving cAMP-mediated cell differentiation in T. cruzi, while raising new questions on the activation of TcACs and the role of downstream components of this pathway.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Trypanosoma cruzi/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Chagas Disease/parasitology , Amino Acid Sequence , Signal Transduction , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL