Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
J Neurol Sci ; 459: 122945, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38564847

The pathological hallmarks of amyotrophic lateral sclerosis (ALS) are degeneration of the primary motor cortex grey matter (GM) and corticospinal tract (CST) resulting in upper motor neuron (UMN) dysfunction. Conventional brain magnetic resonance imaging (MRI) shows abnormal CST hyperintensity in some UMN-predominant ALS patients (ALS-CST+) but not in others (ALS-CST-). In addition to the CST differences, we aimed to determine whether GM degeneration differs between ALS-CST+ and ALS-CST- patients by cortical thickness (CT), voxel-based morphometry (VBM) and fractal dimension analyses. We hypothesized that MRI multifractal (MF) measures could differentiate between neurologic controls (n = 14) and UMN-predominant ALS patients as well as between patient subgroups (ALS-CST+, n = 21 vs ALS-CST-, n = 27). No significant differences were observed in CT or GM VBM in any brain regions between patients and controls or between ALS subgroups. MF analyses were performed separately on GM of the whole brain, of frontal, parietal, occipital, and temporal lobes as well as of cerebellum. Estimating MF measures D (Q = 0), D (Q = 1), D (Q = 2), Δf, Δα of frontal lobe GM classified neurologic controls, ALS-CST+ and ALS-CST- groups with 98% accuracy and > 95% in F1, recall, precision and specificity scores. Classification accuracy was only 74% when using whole brain MF measures and < 70% for other brain lobes. We demonstrate that MF analysis can distinguish UMN-predominant ALS subgroups based on GM changes, which the more commonly used quantitative approaches of CT and VBM cannot.


Amyotrophic Lateral Sclerosis , Gray Matter , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Pyramidal Tracts/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
2.
J Neurol Sci ; 452: 120765, 2023 09 15.
Article En | MEDLINE | ID: mdl-37672915

BACKGROUND: Routine clinical magnetic resonance imaging (MRI) shows bilateral corticospinal tract (CST) hyperintensity in some patients with upper motor neuron (UMN)-predominant ALS (ALS-CST+) but not in others (ALS-CST-). Although, similar in their UMN features, the ALS-CST+ patient group is significantly younger in age, has faster disease progression and shorter survival than the ALS-CST- patient group. Reasons for the differences are unclear. METHOD: In order to evaluate more objective MRI measures of these ALS subgroups, we used diffusion tensor images (DTI) obtained using single shot echo planar imaging sequence from 1.5 T Siemens MRI Scanner. We performed an exploratory whole brain white matter (WM) network analysis using graph theory approach on 45 ALS patients (ALS-CST+) (n = 21), and (ALS-CST-) (n = 24) and neurological controls (n = 14). RESULTS: Significant (p < 0.05) differences in nodal degree measure between ALS patients and controls were observed in motor and extra motor regions, supplementary motor area, subcortical WM regions, cerebellum and vermis. Importantly, WM network abnormalities were significantly (p < 0.05) different between ALS-CST+ and ALS-CST- subgroups. Compared to neurologic controls, both ALS subgroups showed hubs in the right superior occipital gyrus and cuneus as well as significantly (p < 0.05) reduced small worldness supportive of WM network damage. CONCLUSIONS: Significant differences between ALS-CST+ and ALS-CST- subgroups of WM network abnormalities, age of onset, symptom duration prior to MRI, and progression rate suggest these patients represent distinct clinical phenotypes and possibly pathophysiologic mechanisms of ALS.


Amyotrophic Lateral Sclerosis , Leukoaraiosis , White Matter , Humans , White Matter/diagnostic imaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Cerebellum , Echo-Planar Imaging , Motor Neurons
3.
Front Physiol ; 14: 1201617, 2023.
Article En | MEDLINE | ID: mdl-37528895

Purpose: The main purpose of this study was to comprehensively investigate the potential of fractal dimension (FD) measures in discriminating brain gliomas into low-grade glioma (LGG) and high-grade glioma (HGG) by examining tumor constituents and non-tumorous gray matter (GM) and white matter (WM) regions. Methods: Retrospective magnetic resonance imaging (MRI) data of 42 glioma patients (LGG, n = 27 and HGG, n = 15) were used in this study. Using MRI, we calculated different FD measures based on the general structure, boundary, and skeleton aspects of the tumorous and non-tumorous brain GM and WM regions. Texture features, namely, angular second moment, contrast, inverse difference moment, correlation, and entropy, were also measured in the tumorous and non-tumorous regions. The efficacy of FD features was assessed by comparing them with texture features. Statistical inference and machine learning approaches were used on the aforementioned measures to distinguish LGG and HGG patients. Results: FD measures from tumorous and non-tumorous regions were able to distinguish LGG and HGG patients. Among the 15 different FD measures, the general structure FD values of enhanced tumor regions yielded high accuracy (93%), sensitivity (97%), specificity (98%), and area under the receiver operating characteristic curve (AUC) score (98%). Non-tumorous GM skeleton FD values also yielded good accuracy (83.3%), sensitivity (100%), specificity (60%), and AUC score (80%) in classifying the tumor grades. These measures were also found to be significantly (p < 0.05) different between LGG and HGG patients. On the other hand, among the 25 texture features, enhanced tumor region features, namely, contrast, correlation, and entropy, revealed significant differences between LGG and HGG. In machine learning, the enhanced tumor region texture features yielded high accuracy, sensitivity, specificity, and AUC score. Conclusion: A comparison between texture and FD features revealed that FD analysis on different aspects of the tumorous and non-tumorous components not only distinguished LGG and HGG patients with high statistical significance and classification accuracy but also provided better insights into glioma grade classification. Therefore, FD features can serve as potential neuroimaging biomarkers for glioma.

4.
Diagnostics (Basel) ; 13(9)2023 Apr 24.
Article En | MEDLINE | ID: mdl-37174914

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose diagnosis depends on the presence of combined lower motor neuron (LMN) and upper motor neuron (UMN) degeneration. LMN degeneration assessment is aided by electromyography, whereas no equivalent exists to assess UMN dysfunction. Magnetic resonance imaging (MRI) is primarily used to exclude conditions that mimic ALS. We have identified four different clinical/radiological phenotypes of ALS patients. We hypothesize that these ALS phenotypes arise from distinct pathologic processes that result in unique MRI signatures. To our knowledge, no machine learning (ML)-based data analyses have been performed to stratify different ALS phenotypes using MRI measures. During routine clinical evaluation, we obtained T1-, T2-, PD-weighted, diffusion tensor (DT) brain MRI of 15 neurological controls and 91 ALS patients (UMN-predominant ALS with corticospinal tract CST) hyperintensity, n = 21; UMN-predominant ALS without CST hyperintensity, n = 26; classic ALS, n = 23; and ALS patients with frontotemporal dementia, n = 21). From these images, we obtained 101 white matter (WM) attributes (including DT measures, graph theory measures from DT and fractal dimension (FD) measures using T1-weighted), 10 grey matter (GM) attributes (including FD based measures from T1-weighted), and 10 non-imaging attributes (2 demographic and 8 clinical measures of ALS). We employed classification and regression tree, Random Forest (RF) and also artificial neural network for the classifications. RF algorithm provided the best accuracy (70-94%) in classifying four different phenotypes of ALS patients. WM metrics played a dominant role in classifying different phenotypes when compared to GM or clinical measures. Although WM measures from both right and left hemispheres need to be considered to identify ALS phenotypes, they appear to be differentially affected by the degenerative process. Longitudinal studies can confirm and extend our findings.

5.
Eur J Radiol ; 158: 110616, 2023 Jan.
Article En | MEDLINE | ID: mdl-36493498

BACKGROUND: Up to 50% of amyotrophic lateral sclerosis (ALS) patients develop some degree of cognitive dysfunction and a small proportion of these develop frontotemporal dementia (FTD). Non-invasive techniques of magnetic resonance imaging (MRI) and [18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET) have demonstrated structural and metabolic abnormalities, respectively, in the brains of such patients with ALS-FTD. Although initial 18F-FDG PET studies in ALS patients showed only hypometabolism of motor and extramotor brain regions, subsequent studies have demonstrated hypermetabolic changes as well. Such contrasting findings prompted us to hypothesize that hypo- and hypermetabolic brain regions in ALS-FTD patients are associated with divergent degeneration of structural grey matter (GM) and white matter (WM). METHODS: Cerebral glucose metabolic rate (CMRglc), cortical thickness (CT), fractal dimension (FD), and graph theory WM network analyses were performed on clinical MRI and 18F-FDG PET images from 8 ALS-FTD patients and 14 neurologic controls to explore the relationship between GM-WM degeneration and hypo- and hypermetabolic brain regions. RESULTS: CMRglc revealed significant hypometabolism in frontal and precentral gyrus brain regions, with hypermetabolism in temporal, occipital and cerebellar regions. Cortical thinning was noted in both hypo- and hypermetabolic brain areas. Unlike CT, FD did not reveal widespread GM degeneration in hypo- and hypermetabolic brain regions of ALS-FTD patients. Graph theory analysis showed severe WM degeneration in hypometabolic but not hypermetabolic areas, especially in the right hemisphere. CONCLUSION: Our multimodal MRI-PET study provides insights into potentially differential pathophysiological mechanisms between hypo- and hypermetabolic brain regions of ALS-FTD patients.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , White Matter , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Fluorodeoxyglucose F18 , White Matter/diagnostic imaging , White Matter/pathology , Brain/pathology , Neuroimaging , Magnetic Resonance Imaging
6.
Diagnostics (Basel) ; 12(12)2022 Dec 19.
Article En | MEDLINE | ID: mdl-36553224

Classifying low-grade glioma (LGG) patients from high-grade glioma (HGG) is one of the most challenging tasks in planning treatment strategies for brain tumor patients. Previous studies derived several handcrafted features based on the tumor's texture and volume from magnetic resonance images (MRI) to classify LGG and HGG patients. The accuracy of classification was moderate. We aimed to classify LGG from HGG with high accuracy using the brain white matter (WM) network connectivity matrix constructed using diffusion tensor tractography. We obtained diffusion tensor images (DTI) of 44 LGG and 48 HGG patients using routine clinical imaging. Fiber tractography and brain parcellation were performed for each patient to obtain the fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity weighted connectivity matrices. We used a deep convolutional neural network (DNN) for classification and the gradient class activation map (GRAD-CAM) technique to identify the neural connectivity features focused on by the DNN. DNN could classify both LGG and HGG with 98% accuracy. The sensitivity and specificity values were above 0.98. GRAD-CAM analysis revealed a distinct WM network pattern between LGG and HGG patients in the frontal, temporal, and parietal lobes. Our results demonstrate that glioma affects the WM network in LGG and HGG patients differently.

7.
BMC Med Imaging ; 22(1): 89, 2022 05 14.
Article En | MEDLINE | ID: mdl-35568820

BACKGROUND: Segmenting brain tumor and its constituent regions from magnetic resonance images (MRI) is important for planning diagnosis and treatment. In clinical routine often an experienced radiologist delineates the tumor regions using multimodal MRI. But this manual segmentation is prone to poor reproducibility and is time consuming. Also, routine clinical scans are usually of low resolution. To overcome these limitations an automated and precise segmentation algorithm based on computer vision is needed. METHODS: We investigated the performance of three widely used segmentation methods namely region growing, fuzzy C means and deep neural networks (deepmedic). We evaluated these algorithms on the BRATS 2018 dataset by choosing randomly 48 patients data (high grade, n = 24 and low grade, n = 24) and on our routine clinical MRI brain tumor dataset (high grade, n = 15 and low grade, n = 28). We measured their performance using dice similarity coefficient, Hausdorff distance and volume measures. RESULTS: Region growing method performed very poorly when compared to fuzzy C means (fcm) and deepmedic network. Dice similarity coefficient scores for FCM and deepmedic algorithms were close to each other for BRATS and clinical dataset. The accuracy was below 70% for both these methods in general. CONCLUSION: Even though the deepmedic network showed very high accuracy in BRATS challenge for brain tumor segmentation, it has to be custom trained for the low resolution routine clinical scans. It also requires large training data to be used as a stand-alone algorithm for clinical applications. Nevertheless deepmedic may be a better algorithm for brain tumor segmentation when compared to region growing or FCM.


Brain Neoplasms , Image Processing, Computer-Assisted , Algorithms , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results
8.
Neuroimage Clin ; 35: 103037, 2022.
Article En | MEDLINE | ID: mdl-35597032

OBJECTIVE: Our routine clinical neuroimaging showed hyperintense signal along the corticospinal tract only in some but not all patients with upper motor neuron (UMN)-predominant ALS. ALS patients with CST hyperintensity (ALS-CST+) and those without CST hyperintensity (ALS-CST-) present with nearly identical clinical UMN-predominant symptoms. Some previous studies have suggested that ALS patients with frontotemporal dementia (FTD) are on a continuum with ALS patients without FTD, while others have not. We aimed to determine whether: (a) ALS-CST+, ALS-CST-, and ALS-FTD patients show differential sites of predominant neurodegeneration occurring primarily cortically in the perikaryon or subcortically in the white matter (WM), or (b) UMN-predominant ALS is on a continuum with ALS-FTD. METHODS: Exploratory whole brain grey matter (GM) voxel-based morphometry and WM network analysis using graph theory approach were performed. In this exploratory study, MRI data from 58 ALS patients (ALS-FTD, n = 15; ALS-CST+, n = 19; ALS-CST-, n = 24) and 14 neurological controls were obtained. RESULTS: Significant differences in degree measures (evaluating WM networks) were observed between ALS patients and controls in frontal, motor, extra-motor, subcortical, and cerebellar regions. GM atrophy was observed only in the ALS-FTD subgroup and not in the other ALS subgroups. CONCLUSION: Although WM network disruption by the ALS disease process showed different patterns between ALS-CST+, ALS-CST-, and ALS-FTD subgroups, there were some overlaps, particularly in prefrontal regions and between ALS-CST+ and ALS-FTD patients. Our preliminary findings suggest a partial continuum of, at least, WM degeneration between these subgroups with predominance of cortical pathology ("neuronopathy") in ALS-FTD patients and subcortical WM pathology ("axonopathy") in ALS-CST+ and ALS-CST- patients.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Motor Neurons/pathology , Neuroimaging/methods
9.
Brain Sci ; 11(3)2021 Mar 14.
Article En | MEDLINE | ID: mdl-33799358

A pathological hallmark of amyotrophic lateral sclerosis (ALS) is corticospinal tract (CST) degeneration resulting in upper motor neuron (UMN) dysfunction. No quantitative test is available to easily assess UMN pathways. Brain neuroimaging in ALS promises to potentially change this through identifying biomarkers of UMN dysfunction that may accelerate diagnosis and track disease progression. Fractal dimension (FD) has successfully been used to quantify brain grey matter (GM) and white matter (WM) shape complexity in various neurological disorders. Therefore, we investigated CST and whole brain GM and WM morphometric changes using FD analyses in ALS patients with different phenotypes. We hypothesized that FD would detect differences between ALS patients and neurologic controls and even between the ALS subgroups. Neuroimaging was performed in neurologic controls (n = 14), and ALS patients (n = 75). ALS patients were assigned into four groups based on their clinical or radiographic phenotypes. FD values were estimated for brain WM and GM structures. Patients with ALS and frontotemporal dementia (ALS-FTD) showed significantly higher CST FD values and lower primary motor and sensory cortex GM FD values compared to other ALS groups. No other group of ALS patients revealed significant FD value changes when compared to neurologic controls or with other ALS patient groups. These findings support a more severe disease process in ALS-FTD patients compared to other ALS patient groups. FD value measures may be a sensitive index to evaluate GM and WM (including CST) degeneration in ALS patients.

10.
Article En | MEDLINE | ID: mdl-32924608

OBJECTIVE: [18F]-fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET) imaging and magnetic resonance imaging (MRI) of brain in ALS patients with frontotemporal lobe dementia (ALS-FTD) reveal hypometabolism and hypermetabolism, as well as gray matter (GM) and white matter (WM) abnormalities in different brain regions, respectively. Hypometabolism arising from neuronal dysfunction or loss is the most recognized pathophysiologic change in neurodegeneration, whereas mechanisms underlying hypermetabolism remain unclear. We hypothesize that hypometabolic and hypermetabolic brain regions in ALS-FTD represent differential degeneration of GM and WM structures, as revealed by co-registered MRI in a two time-point longitudinal multimodal study. Methods: A 69-year-old female with ALS-FTD underwent 18F-FDG PET, diffusion tensor imaging (DTI), and T1-weighted MRI at baseline (15 months after symptom onset), and 20.4 months later. Cerebral glucose metabolism rate, cortical thickness, cortical area, and WM network changes were measured longitudinally. Results and conclusion: The patient had symptoms and signs of bulbar-onset upper motor neuron (UMN)-predominant ALS with language and behavioral dysfunction. Evaluation at baseline showed bulbar dysfunction, and impaired language and executive function. At follow-up, worsened bulbar and other motor functions, and prominent FTD both reflected significant progression. Cortical thickness and surface area showed differential involvement in the hypometabolic and hypermetabolic regions. WM connections from frontal regions to other brain regions were completely absent by graph theory-based network analysis when compared to temporal regions indicating prominent frontal lobe degeneration. Structural neuroimaging reveals different patterns of GM and WM involvement in the hypometabolic and hypermetabolic brain regions in a patient with ALS-FTD.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , White Matter , Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging , Female , Frontotemporal Dementia/complications , Frontotemporal Dementia/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , White Matter/diagnostic imaging
11.
Front Physiol ; 12: 784865, 2021.
Article En | MEDLINE | ID: mdl-35069246

Gait analysis is used in many fields such as Medical Diagnostics, Osteopathic medicine, Comparative and Sports-related biomechanics, etc. The most commonly used system for capturing gait is the advanced video camera-based passive marker system such as VICON. However, such systems are expensive, and reflective markers on subjects can be intrusive and time-consuming. Moreover, the setup of markers for certain rehabilitation patients, such as people with stroke or spinal cord injuries, could be difficult. Recently, some markerless systems were introduced to overcome the challenges of marker-based systems. However, current markerless systems have low accuracy and pose other challenges in gait analysis with people in long clothing, hiding the gait kinematics. The present work attempts to make an affordable, easy-to-use, accurate gait analysis system while addressing all the mentioned issues. The system in this study uses images from a video taken with a smartphone camera (800 × 600 pixels at an average rate of 30 frames per second). The system uses OpenPose, a 2D real-time multi-person keypoint detection technique. The system learns to associate body parts with individuals in the image using Convolutional Neural Networks (CNNs). This bottom-up system achieves high accuracy and real-time performance, regardless of the number of people in the image. The proposed system is called the "OpenPose based Markerless Gait Analysis System" (OMGait). Ankle, knee, and hip flexion/extension angle values were measured using OMGait in 16 healthy volunteers under different lighting and clothing conditions. The measured kinematic values were compared with a standard video camera based normative dataset and data from a markerless MS Kinect system. The mean absolute error value of the joint angles from the proposed system was less than 90 for different lighting conditions and less than 110 for different clothing conditions compared to the normative dataset. The proposed system is adequate in measuring the kinematic values of the ankle, knee, and hip. It also performs better than the markerless systems like MS Kinect that fail to measure the kinematics of ankle, knee, and hip joints under dark and bright light conditions and in subjects with long robe clothing.

13.
Front Neurosci ; 13: 704, 2019.
Article En | MEDLINE | ID: mdl-31354413

Amyotrophic lateral sclerosis (ALS) is an incurable and progressively fatal neurodegenerative disease that manifests with distinct clinical phenotypes, which are seen in neuroimaging, and clinical studies. T2- and proton density (PD)-weighted magnetic resonance imaging (MRI) displays hyperintense signal along the corticospinal tract (CST) in some ALS patients with upper motor neuron (UMN)-predominant signs. These patients tend to be younger and have significantly faster disease progression. We hypothesize that such ALS patients with CST hyperintensity (ALS-CST+) comprise a clinical subtype distinct from other ALS subtypes, namely patients with UMN-predominant ALS without CST hyperintensity, classic ALS, and ALS with frontotemporal dementia (FTD). Novel approaches such as fractal dimension analysis on conventional MRI (cMRI) and advanced MR techniques such as diffusion tensor imaging (DTI) reveal significant differences between ALS-CST+ and the aforementioned ALS subtypes. Our unbiased neuroimaging studies demonstrate that the ALS-CST+ group, which can be initially identified by T2-, PD-, and FLAIR-weighted cMRI, is distinctive and distinguishable from other ALS subtypes with possible differences in disease pathogenesis.

14.
Front Neurol ; 10: 234, 2019.
Article En | MEDLINE | ID: mdl-30941090

Single time point positron emission tomography (PET) studies of patients with amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD), have demonstrated hypometabolism or hypermetabolism in certain brain regions. To determine whether longitudinal (at baseline and 20.4 months later) PET and magnetic resonance imaging (MRI) reveal evolving brain imaging pathology corresponding to clinical progression in a patient with ALS-FTD, cerebral glucose metabolic rate, cortical thickness (CT) and cortical area (CA) were obtained and symmetric percent change (SPC) for each calculated. The patient had worsening symptoms and signs of bulbar-onset upper motor neuron-predominant ALS as well as language and behavioral dysfunction. At baseline, minimally decreased ALSFRS-R (42/48) reflecting bulbar dysfunction was observed, along with language and executive function difficulties. At follow-up, bulbar and limb function rapidly declined as revealed by lower ALSFRS-R (27/48) and worsening language and cognitive function. PET revealed either hyper- and hypo-metabolic changes in several brain regions, especially in the left hemisphere. Marked clinical decline was accompanied by worsening cerebral and subcortical hyper and hypo-metabolism along with CT changes in regions known to degenerate in the primary progressive aphasia (PPA) form of ALS-FTD. Our case report demonstrates the progressive functional and structural neuroimaging abnormalities underlying clinical motor and neurocognitive deficits evolving in a patient with bulbar-onset ALS-FTD. Correlating neurological and neurocognitive decline with PET and MRI neuroimaging measures can provide better insights into pathophysiological mechanisms of ALS and ALS-FTD.

15.
Brain Imaging Behav ; 13(4): 914-924, 2019 Aug.
Article En | MEDLINE | ID: mdl-29909586

Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.


Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Adolescent , Adult , Brain/anatomy & histology , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cognition Disorders/etiology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Male , Neuropsychological Tests , White Matter/anatomy & histology
16.
Neuroimage Clin ; 14: 574-579, 2017.
Article En | MEDLINE | ID: mdl-28337412

Diagnosis of amyotrophic lateral sclerosis (ALS) depends on clinical evidence of combined upper motor neuron (UMN) and lower motor neuron (LMN) degeneration, although ALS patients can present with features predominantly of one or the other. Some UMN-predominant patients show hyperintense signal along the intracranial corticospinal tract (CST) on T2- and proton density (PD)-weighted images (ALS-CST +), and appear to have faster disease progression when compared to those without CST hyperintensity (ALS-CST -). The reason for this is unknown. We hypothesized that diffusion tensor tractography (DTT) would reveal differences in DTI abnormalities along the intracranial CST between these two patient subgroups. Clinical DTI scans were obtained at 1.5T in 14 neurologic controls and 45 ALS patients categorized into two UMN phenotypes based on clinical measures and MRI. DTT was used to quantitatively assess the CST in control and ALS groups. DTT revealed subcortical loss ('truncation') of virtual motor CST fibers (presumably) projecting from the precentral gyrus (PrG) in ALS patients but not in controls; in contrast, virtual fibers (presumably) projecting to the adjacent postcentral gyrus (PoG) were spared. No significant differences in virtual CST fiber length were observed between controls and ALS patients. However, the frequency of CST truncation was significantly higher in the ALS-CST + subgroup (9 of 21) than in the ALS-CST - subgroup (4 of 24; p = 0.049), suggesting this finding could differentiate these ALS subgroups. Also, because virtual CST truncation occurred only in the ALS patient group and not in the control group (p = 0.018), this DTT finding could prove to be a diagnostic biomarker of ALS. Significantly shorter disease duration and faster disease progression rate were observed in ALS patients with CST fiber truncation than in those without (p < 0.05). DTI metrics of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were also determined in four regions of interest (ROIs) along the CST, namely: cerebral peduncle (CP), posterior limb of internal capsule (PLIC), centrum semiovale at top of lateral ventricle (CSoLV) and subcortical to primary motor cortex (subPMC). Of note, FA values along the left hemisphere virtual CST tract were significantly different between controls and ALS-CST + patients (p < 0.05) only at the PLIC level, but not at the CSoLV or subPMC level. Also, no significant differences in FA values were observed between ALS subgroups or between control and ALS-CST - groups (p > 0.05) in any of the ROIs. In addition, comparing FA values between ALS patients with CST truncation and those without in the aforementioned four ROIs, revealed no significant differences in either hemisphere. However, visual evaluation of DTT was able to identify UMN degeneration in patients with ALS, particularly in those with a more aggressive clinical disease course and possibly different pathologic processes.


Amyotrophic Lateral Sclerosis/diagnostic imaging , Diffusion Tensor Imaging , Pyramidal Tracts/diagnostic imaging , Adult , Aged , Anisotropy , Brain Mapping , Disease Progression , Female , Humans , Image Processing, Computer-Assisted , Internal Capsule/diagnostic imaging , Male , Middle Aged , Pyramidal Tracts/pathology , Severity of Illness Index
17.
IEEE Trans Neural Syst Rehabil Eng ; 25(8): 1268-1277, 2017 08.
Article En | MEDLINE | ID: mdl-27834646

The goal of this paper is to demonstrate a novel approach that combines Empirical Mode Decomposition (EMD) with Notch filtering to remove the electrical stimulation (ES) artifact from surface electromyogram (EMG) data for interpretation of muscle responses during functional electrical stimulation (FES) experiments. FES was applied to the rectus femoris (RF) muscle unilaterally of six able bodied (AB) and one individual with spinal cord injury (SCI). Each trial consisted of three repetitions of ES. We hypothesized that the EMD algorithm provides a suitable platform for decomposing the EMG signal into physically meaningful intrinsic mode functions (IMFs) which can be further used to isolate electrical stimulation (ES) artifact. A basic EMD algorithm was used to decompose the EMG signals collected during FES into IMFs for each repetition separately. IMFs most contaminated by ES were identified based on the standard deviation (SD) of each IMF. Each artifact IMF was Notch filtered to filter ES harmonics and added to remaining IMFs containing pure EMG data to get a version of a filtered EMG signal. Of all such versions of filtered signals generated from each artifact IMF, the one with maximum signal to noise ratio (SNR) was chosen as the final output. The validity of the filtered signal was assessed by quantitative metrics, 1) root mean squared error (RMSE) and signal to noise (SNR) ratio values obtained by comparing a clean EMG and EMD-Notch filtered signal from the combination of simulated ES and clean EMG and, 2) using EMG-force correlation analysis on the data collected from AB individuals. Finally, the potential applicability of this algorithm on a neurologically impaired population was shown by applying the algorithm on EMG data collected from an individual with SCI. EMD combined with Notch filtering successfully extracted the EMG signal buried under ES artifact. Filtering performance was validated by smaller RMSE values and greater SNR post filtering. The amplitude values of the filtered EMG signal were seen to be consistent for three repetitions of ES and there was no significant difference among the repetition for all subjects. For the individual with a SCI the algorithm was shown to successfully isolate the underlying bursts of muscle activations during FES. The data driven nature of EMD algorithm and its ability to act as a filter bank at different bandwidths make this method extremely suitable for dissecting ES induced EMG into IMFs. Such IMFs clearly show the presence of ES artifact at different intensities as well as pure artifact free EMG. This allows the application of Notch filters to IMFs containing ES artifact to further isolate the EMG. As a result of such stepwise approach, the extraction of EMG is achieved with minimal data loss. This study provides a unique approach to dissect and interpret the EMG signal during FES applications.


Algorithms , Artifacts , Electric Stimulation Therapy/methods , Electromyography/methods , Muscle, Skeletal/physiopathology , Neurophysiological Monitoring/methods , Spinal Cord Injuries/rehabilitation , Adult , Data Interpretation, Statistical , Diagnosis, Computer-Assisted/methods , Humans , Male , Middle Aged , Muscle Contraction , Muscle, Skeletal/innervation , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/physiopathology , Therapy, Computer-Assisted/methods
18.
BMC Neurol ; 15: 32, 2015 Mar 13.
Article En | MEDLINE | ID: mdl-25879588

BACKGROUND: Because our previous study showed disparate voxel based morphometry (VBM) results between SPM and FSL softwares in the brain of amyotrophic lateral sclerosis patients with frontotemporal dementia (ALS-FTD), we investigated which VBM results may more represent atrophy by comparing with Freesurfer's cortical volume and thickness measures. METHODS: MRI at 1.5 T was obtained during routine clinical imaging of ALS-FTD patients (n = 18) and in unaffected neurologic controls (n = 15). Gray matter (GM) VBM analysis was carried out using FSL and SPM. Cortical thickness and volume analysis was performed using Freesurfer. RESULTS: GM volume was significantly (p < 0.05) reduced in both motor and extra motor regions in ALS- FTD when compared to unaffected neurologic controls in FSL and Freesurfer but not in SPM. Dice similarity index for cortical GM volume changes between FSL and Freesurfer was 0.30 for motor and 0.31 for non-motor regions as opposed to 0 (motor) and 0.02 (non-motor) between SPM and Freesurfer. CONCLUSION: GM volume changes using FSL showed similar pattern with Freesurfer cortical volume and thickness changes in contrast to SPM results. Our results suggest that, at least for our dataset, VBM results obtained using FSL software should be considered as more representative of GM atrophy.


Amyotrophic Lateral Sclerosis/pathology , Cerebral Cortex/pathology , Frontotemporal Dementia/pathology , Gray Matter/pathology , Image Processing, Computer-Assisted/standards , Software , Adult , Aged , Aged, 80 and over , Atrophy , Brain/pathology , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size
19.
Soc Neurosci ; 10(1): 27-34, 2015.
Article En | MEDLINE | ID: mdl-25223759

Emotional processing deficits have recently been identified in individuals with traumatic brain injury (TBI), specifically in the domain of facial affect recognition. However, the neural networks underlying these impairments have yet to be identified. In the current study, 42 individuals with moderate to severe TBI and 23 healthy controls performed a task of facial affect recognition (Facial Emotion Identification Test (FEIT)) in order to assess their ability to identify and discriminate six emotions: happiness, sadness, anger, surprise, shame, and fear. These individuals also underwent structural neuroimaging including diffusion tensor imaging to examine white matter (WM) integrity. Correlational analyses were performed to determine where in the brain WM damage was associated with performance on the facial affect recognition task. Reduced performance on the FEIT was associated with reduced WM integrity (fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) in the inferior longitudinal fasciculus and inferior-fronto-occipital fasciculus in individuals with TBI. Poor performance on the task was additionally associated with reduced gray matter (GM) volume in lingual gyrus and parahippocampal gyrus. The results implicate a pattern of WM and GM damage in TBI that may play a role in emotional processing impairments.


Brain Injuries/complications , Emotions/physiology , Face , Leukoencephalopathies/etiology , Prosopagnosia/etiology , Adult , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Photic Stimulation , Psychiatric Status Rating Scales , Statistics as Topic , Young Adult
20.
J Neurol Neurosurg Psychiatry ; 86(9): 952-8, 2015 Sep.
Article En | MEDLINE | ID: mdl-25520437

OBJECTIVE: Our previous voxel based morphometry (VBM) studies in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (ALS-FTD) showed reduced motor and extramotor grey matter (GM) volume when compared to neurological controls. However, erroneously high GM values can result because VBM analysis includes both cortical gyri and sulci as a single GM region. In addition, the relationship between structural and functional changes is unknown. Therefore, we determined whether GM volumetric changes seen in patients with ALS-FTD were due to changes in cortical thickness, area or both, and compared these structural changes with metabolic changes as revealed by positron emission tomography (PET). METHODS: T1-weighted MRIs were obtained in unaffected neurological controls and in patients with ALS-FTD; the latter also underwent PET imaging. We assessed brain GM structural changes using VBM and cortical thickness, and metabolic changes using PET images. Significant (p<0.05) reductions in GM volume and cortical thickness were observed in motor and extramotor regions in patients with ALS-FTD compared to controls. No significant difference in cortical surface area was observed in any of the brain regions. Results Significant (p<0.05) reductions in cerebral glucose metabolism rate were observed in brain regions where structural changes were also observed. Significant reductions primarily in cortical thickness were the likely reason for decreased GM volume in ALS-FTD. CONCLUSIONS: Metabolic changes corresponded well with structural changes in motor and extramotor areas, and sometimes occurred even in the absence of GM volume reduction. Coincident structural and functional GM changes suggest that neurodegeneration may occur as "neuronopathy" in patients with ALS-FTD.


Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Adult , Aged , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography
...