Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Hematol ; 103(6): 1919-1929, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630133

ABSTRACT

De novo acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD) have worse treatment outcomes. Arsenic trioxide (ATO) used in the treatment of acute promyelocytic leukemia (APL) has been reported to be effective in degrading the FLT3 protein in AML cell lines and sensitizing non-APL AML patient samples in-vitro. We have previously reported that primary cells from FLT3-ITD mutated AML patients were sensitive to ATO in-vitro compared to other non-M3 AML and molecular/pharmacological inhibition of NF-E2 related factor 2 (NRF2), a master regulator of antioxidant response improved the chemosensitivity to ATO and daunorubicin even in non FLT3-ITD mutated cell lines and primary samples. We examined the effects of molecular/pharmacological suppression of NRF2 on acquired ATO resistance in the FLT3-ITD mutant AML cell line (MV4-11-ATO-R). ATO-R cells showed increased NRF2 expression, nuclear localization, and upregulation of bonafide NRF2 targets. Molecular inhibition of NRF2 in this resistant cell line improved ATO sensitivity in vitro. Digoxin treatment lowered p-AKT expression, abrogating nuclear NRF2 localization and sensitizing cells to ATO. However, digoxin and ATO did not sensitize non-ITD AML cell line THP1 with high NRF2 expression. Digoxin decreased leukemic burden and prolonged survival in MV4-11 ATO-R xenograft mice. We establish that altering NRF2 expression may reverse acquired ATO resistance in FLT3-ITD AML.


Subject(s)
Arsenic Trioxide , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Mutation , NF-E2-Related Factor 2 , Signal Transduction , fms-Like Tyrosine Kinase 3 , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Humans , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Animals , Mice , Signal Transduction/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female
2.
Cell Signal ; 116: 111067, 2024 04.
Article in English | MEDLINE | ID: mdl-38281615

ABSTRACT

Despite the success of Tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML), leukemic stem cells (LSCs) persist, contributing to relapse and resistance. CML Mesenchymal Stromal Cells (MSCs) help in LSC maintenance and protection from TKIs. However, the limited passage and self-differentiation abilities of primary CML MSCs hinder extensive research. To overcome this, we generated and characterized an immortalised CML patient-derived MSC (iCML MSC) line and assessed its role in LSC maintenance. We also compared the immunophenotype and differentiation potential between primary CML MSCs at diagnosis, post-treatment, and with normal bone marrow MSCs. Notably, CML MSCs exhibited enhanced chondrogenic differentiation potential compared to normal MSCs. The iCML MSC line retained the trilineage differentiation potential and was genetically stable, enabling long-term investigations. Functional studies demonstrated that iCML MSCs protected CML CD34+ cells from imatinib-induced apoptosis, recapitulating the bone marrow microenvironment-mediated resistance observed in patients. iCML MSC-conditioned media enabled CML CD34+ and AML blast cells to proliferate rapidly, with no impact on healthy donor CD34+ cells. Gene expression profiling revealed dysregulated genes associated with calcium metabolism in CML CD34+ cells cocultured with iCML MSCs, providing insights into potential therapeutic targets. Further, cytokine profiling revealed that the primary CML MSC lines abundantly secreted 25 cytokines involved in immune regulation, supporting the hypothesis that CML MSCs create an immune modulatory microenvironment that promotes growth and protects against TKIs. Our study establishes the utility of iCML MSCs as a valuable model to investigate leukemic-stromal interactions and study candidate genes involved in mediating TKI resistance in CML LSCs.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Mesenchymal Stem Cells , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Bone Marrow/metabolism , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Gene Expression Profiling , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment
3.
Front Pharmacol ; 14: 1187066, 2023.
Article in English | MEDLINE | ID: mdl-37324449

ABSTRACT

Introduction: The ligand-activated transcription factors, nuclear hormone receptors (NHRs), remain unexplored in hematological malignancies except for retinoic acid receptor alpha (RARA). Methods: Here we profiled the expression of various NHRs and their coregulators in Chronic myeloid leukemia (CML) cell lines and identified a significant differential expression pattern between inherently imatinib mesylate (IM)-sensitive and resistant cell lines. Results: Retinoid-X-receptor alpha (RXRA) was downregulated in CML cell lines inherently resistant to IM and in primary CML CD34+ cells. Pre-treatment with clinically relevant RXRA ligands improved sensitivity to IM in-vitro in both CML cell lines and primary CML cells. This combination effectively reduced the viability and colony-forming capacity of CML CD34+ cells in-vitro. In-vivo, this combination reduced leukemic burden and prolonged survival. Overexpression (OE) of RXRA inhibited proliferation and improved sensitivity to IM in-vitro. In-vivo, RXRA OE cells showed reduced engraftment of cells in the bone marrow, improved sensitivity to IM, and prolonged survival. Both RXRA OE and ligand treatment markedly reduced BCR::ABL1 downstream kinase activation, activating apoptotic cascades and improving sensitivity to IM. Importantly, RXRA OE also led to the disruption of the oxidative capacity of these cells. Conclusion: Combining IM with clinically available RXRA ligands could form an alternative treatment strategy in CML patients with suboptimal response to IM.

5.
Leuk Res ; 128: 107054, 2023 05.
Article in English | MEDLINE | ID: mdl-36906941

ABSTRACT

Chemotherapy resistance leading to disease relapse is a significant barrier in treating acute myeloid leukemia (AML). Metabolic adaptations have been shown to contribute to therapy resistance. However, little is known about whether specific therapies cause specific metabolic changes. We established cytarabine-resistant (AraC-R) and Arsenic trioxide-resistant (ATO-R) AML cell lines, displaying distinct cell surface expression and cytogenetic abnormalities. Transcriptomic analysis revealed a significant difference in the expression profiles of ATO-R and AraC-R cells. Geneset enrichment analysis showed AraC-R cells rely on OXPHOS, while ATO-R cells on glycolysis. ATO-R cells were also enriched for stemness gene signatures, whereas AraC-R cells were not. The mito stress and glycolytic stress tests confirmed these findings. The distinct metabolic adaptation of AraC-R cells increased sensitivity to the OXPHOS inhibitor venetoclax. Cytarabine resistance was circumvented in AraC-R cells by combining Ven and AraC. In vivo, ATO-R cells showed increased repopulating potential, leading to aggressive leukemia compared to the parental and AraC-R. Overall, our study shows that different therapies can cause different metabolic changes and that these metabolic dependencies can be used to target chemotherapy-resistant AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cytarabine , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Phenotype
6.
Sci Rep ; 10(1): 20640, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244077

ABSTRACT

Achieving early molecular response (EMR) has been shown to be associated with better event free survival in patients with chronic phase chronic myeloid leukemia (CP-CML) on Imatinib therapy. We prospectively evaluated the factors influencing the 2-year failure free survival (FFS) and EMR to imatinib therapy in these patients including day29 plasma Imatinib levels, genetic variants and the gene expression of target genes in imatinib transport and biotransformation. Patients with low and intermediate Sokal score had better 2-year FFS compared to those with high Sokal Score (p = 0.02). Patients carrying ABCB1-C1236T variants had high day29 plasma imatinib levels (P = 0.005), increased EMR at 3 months (P = 0.044) and a better 2 year FFS (P = 0.003) when compared to those with wild type genotype. This translates to patients with lower ABCB1 mRNA expression having a significantly higher intracellular imatinib levels (P = 0.029). Higher day29 plasma imatinib levels was found to be strongly associated with patients achieving EMR at 3 months (P = 0.022), MMR at 12 months (P = 0.041) which essentially resulted in better 2-year FFS (p = 0.05). Also, patients who achieved EMR at 3 months, 6 months and MMR at 12 months had better FFS when compared to those who did not. This study suggests the incorporation of these variables in to the imatinib dosing algorithm as predictive biomarkers of response to Imatinib therapy.


Subject(s)
Antineoplastic Agents/blood , Imatinib Mesylate/blood , Leukemia, Myeloid, Chronic-Phase/blood , Polymorphism, Genetic/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Adolescent , Adult , Aged , Antineoplastic Agents/therapeutic use , Female , Gene Expression/genetics , Humans , Imatinib Mesylate/therapeutic use , Leukemia, Myeloid, Chronic-Phase/drug therapy , Leukemia, Myeloid, Chronic-Phase/genetics , Male , Middle Aged , Prognosis , RNA, Messenger/genetics , Treatment Outcome , Young Adult
7.
EJHaem ; 1(1): 219-229, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32885223

ABSTRACT

Early complications post hematopoietic stem cell transplantation (HSCT) such as sinusoidal obstruction syndrome (SOS) and graft versus host disease (GVHD) can be life threatening. Although several biomarkers have been identified to correlate with these complications and their response to treatment, these are yet to be used in clinical practice. Here, we evaluated circulating endothelial cells (CECs) (n = 26) and plasma biomarkers (ST2, REG3α, VCAM1, ICAM1, TIM3) (N = 210) at early time points, to determine their association with early complications post-HSCT. Elevated CEC counts at the end of conditioning was associated with GVHD, indicating endothelial damage during HSCT. Plasma levels of REG3α, VCAM1, ICAM1, and TIM3 on day 14 (D14) and D14 ICAM1 and D28 ST2 were significantly higher in patients with SOS and aGVHD, respectively. Upon sub-group analysis, D28 ST2, D14/D28 REG3α, and D14ICAM1 levels were significantly higher in patients with gastrointestinal GVHD, while D28ST2 was higher in those with skin/liver GVHD. High ST2 levels on D28 was significantly associated with non-relapse mortality (NRM) and overall survival. Our results suggest that elevated ST2 levels on D28 could predict the likelihood of developing aGVHD and could influence NRM and OS.

8.
PLoS One ; 12(5): e0177227, 2017.
Article in English | MEDLINE | ID: mdl-28505160

ABSTRACT

Cytarabine (Ara-C) and Daunorubicin (Dnr) forms the backbone of acute myeloid leukemia (AML) therapy. Drug resistance and toxic side effects pose a major threat to treatment success and hence alternate less toxic therapies are warranted. NF-E2 related factor-2 (Nrf2), a master regulator of antioxidant response is implicated in chemoresistance in solid tumors. However, little is known about the role of Nrf2 in AML chemoresistance and the effect of pharmacological inhibitor brusatol in modulating this resistance. Primary AML samples with high ex-vivo IC50 to Ara-C, ATO, Dnr had significantly high NRF2 RNA expression. Gene-specific knockdown of NRF2 improved sensitivity to these drugs in resistant AML cell lines by decreasing the expression of downstream antioxidant targets of Nrf2 by compromising the cell's ability to scavenge the ROS. Treatment with brusatol, a pharmacological inhibitor of Nrf2, improved sensitivity to Ara-C, ATO, and Dnr and reduced colony formation capacity. AML cell lines stably overexpressing NRF2 showed increased resistance to ATO, Dnr and Ara-C and increased expression of downstream targets. This study demonstrates that Nrf2 could be an ideal druggable target in AML, more so to the drugs that function through ROS, suggesting the possibility of using Nrf2 inhibitors in combination with chemotherapeutic agents to modulate drug resistance in AML.


Subject(s)
Drug Resistance, Neoplasm/genetics , Leukemia, Myeloid, Acute/genetics , NF-E2-Related Factor 2/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antioxidants/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cytarabine/pharmacology , Cytarabine/therapeutic use , Daunorubicin/pharmacology , Daunorubicin/therapeutic use , Gene Expression , Gene Knockdown Techniques , Humans , Inhibitory Concentration 50 , Kelch-Like ECH-Associated Protein 1/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Protein Transport , Response Elements , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...