Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 399: 130630, 2024 May.
Article in English | MEDLINE | ID: mdl-38522678

ABSTRACT

The present study aims to enhance the biomethane production potential of microalgae via a dual disintegration process. During this process, the microalgae biomass was firstly subjected to cell wall weakening by thermochemical disintegration (TC) (50 to 80 °C), pH adjustment with alkali, NaOH (6 to 10) and time (0 to 10 min) and, secondly, by bacterial disintegration (BD). TC-BD disintegration was comparatively higher (33 %) than BD (24 %), TC (8.5 %), and control (7 %). A more significant VFA accumulation of 2816 mg/L was recorded for TC-BD. Similarly, a greater substrate anaerobic biodegradability was achieved in TC-BD (0.32 g COD /g COD) than BD (0.21 g COD /g COD), TC alone (0.09 gCOD/g COD) and control (0.08 g COD /g COD), respectively. The TC-BD achieves a positive net profit and an energy ratio of + 0.12 GJ/d and 1.03. The proposed dual disintegration has a promising future for commercialization.


Subject(s)
Microalgae , Biomass , Cost-Benefit Analysis , Methane , Bacteria , Anaerobiosis
2.
J Environ Manage ; 351: 119777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086119

ABSTRACT

Dual chambered microbial fuel cell (DMFC) is an advanced and effective treatment technology in wastewater treatment. The current work has made an effort to treat petrochemical industrial wastewater (PWW) as a DMFC substrate for power generation and organic substance removal. Investigating the impact of organic load (OL) on organic reduction and electricity generation is the main objective of this study. At the OL of 1.5 g COD/L, the highest total chemical oxygen demand (TCOD) removal efficiency of 88%, soluble oxygen demand (SCOD) removal efficiency of 80% and total suspended solids (TSS) removal efficiency of 71% were seen, respectively. In the same optimum condition of 1.5 g COD/L, the highest current and power density of about 270 mW/m2 and 376 mA/m2 were also observed. According to the results of this study, using high-strength organic wastewater in DMFC can assist in addressing the issue of the petrochemical industries and minimize the energy demand.


Subject(s)
Bioelectric Energy Sources , Water Purification , Wastewater , Electricity , Water Purification/methods , Biological Oxygen Demand Analysis , Electrodes , Waste Disposal, Fluid/methods
3.
Bioresour Technol ; 387: 129587, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37549718

ABSTRACT

Wastewater disposal in the ecosystem affects aquatic and human life, which necessitates the removal of the contaminants. Eliminating wastewater contaminants using biochar produced through the thermal decomposition of lignocellulosic biomass (LCB) is sustainable. Due to its high specific surface area, porous structure, oxygen functional groups, and low cost, biochar has emerged as an alternate contender in catalysis. Various innovative advanced technologies were combined with biochar for effective wastewater treatment. This review examines the use of LCB for the synthesis of biochar along with its activation methods. It also elaborates on using advanced biochar-based technologies in wastewater treatment and the mechanism for forming oxidizing species. The research also highlights the use of machine learning in pollutant removal and identifies the obstacles of biochar-based catalysts in both real-time and cutting-edge technologies. Probable and restrictions for further exploration are discussed.


Subject(s)
Wastewater , Water Pollutants, Chemical , Humans , Ecosystem , Adsorption , Charcoal/chemistry , Catalysis , Water Pollutants, Chemical/chemistry
4.
J Environ Manage ; 343: 118240, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37235990

ABSTRACT

A significant amount of plastic waste is generated each year on a global scale, in which the maximum quantity of plastic waste is typically dumped in landfills in various parts of the world. Moreover, dumping plastic waste in landfills cannot address the issue of proper disposal; it simply delays the process. Exploiting waste resources entails environmental hazards because plastic wastes buried in landfills gradually break down into Microplastics (MPs) due to physical, chemical, and biological effects. The possibility of landfill leachate as a source of MPs in the environment has not received much attention. Without systematic treatment, MPs in leachate increase the risk to human health and environmental health since they contain dangerous and toxic pollutants and antibiotic resistance genes transmitted by leachate vectors. Due to their severe environmental risks, MPs are now widely recognized as emerging pollutants. Therefore, the composition of MPs in landfill leachate and the interaction of MPs with other hazardous contaminants are summarised in this review. The available potential mitigation or treatment methods of MPs in landfill leachate as of now, along with the drawbacks and challenges of the present leachate treatment for eliminating MPs, are described in this review. Since it is unclear how MPs will be removed from the current leachate facilities, it is crucial to develop innovative treatment facilities as quickly as possible. Finally, the areas that require more research to provide complete solutions to the persistent problem of plastic debris are discussed.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Humans , Refuse Disposal/methods , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Waste Disposal Facilities , Solid Waste/analysis
5.
Bioresour Technol ; 368: 128332, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414137

ABSTRACT

Hydrogen has gained attention as an alternative source of energy because of its non-polluting nature as on combustion it produces only water. Biological methods are eco-friendly and have benefits in waste management and hydrogen production simultaneously. The use of algal biomass as feedstock in dark fermentation is advantageous because of its low lignin content, high growth rate, and carbon-fixation ability. The major bottlenecks in biohydrogen production are its low productivity and high production costs. To overcome these issues, many advances in the area of biomass pretreatment to increase sugar release, understanding of algal biomass composition, and development of fermentation strategies for the complete recovery of nutrients are ongoing. Recently, mixed substrate fermentation, multistep fermentation, and the use of nanocatalysts to improve hydrogen production have increased. This review article evaluates the current progress in algal biomass pretreatment, key factors, and possible solutions for increasing hydrogen production.


Subject(s)
Hydrogen , Lignin , Biomass , Fermentation , Nutrients
6.
Bioresour Technol ; 369: 128383, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427767

ABSTRACT

The main downside of utilizing algal biomass for biofuel production is the rigid cell wall which confines the availability of soluble organics to hydrolytic microbes during biofuel conversion. This constraint reduces the biofuel production efficiency of algal biomass. On the other hand, presenting various pretreatment methods before biofuel production affords cell wall disintegration and enhancement in biofuel generation. The potential of pretreatment methods chiefly relies on the extent of biomass liquefaction, energy, and cost demand. In this review, different pretreatments employed to disintegrate algal biomass were conferred in depth with detailed information on their efficiency in enhancing liquefaction and biofuel yield for pilot-scale implementation. Based on this review, it has been concluded that combinative and phase-separated pretreatments provide virtual input in enhancing the biofuel generation based on liquefaction potential, energy, and cost. Future studies should focus on decrement in cost and energy requirement of pretreatment in depth.


Subject(s)
Biofuels , Plants , Biomass , Cost-Benefit Analysis , Hydrolysis
7.
Bioresour Technol ; 367: 128215, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332858

ABSTRACT

Carotenoids are naturally occurring pigments that are widely distributed in algae, fungi, bacteria, and plants. Carotenoids play a significant role in the food, feed, cosmetic, nutraceutical, and pharmaceutical industries. These pigments are effectively considered as a health-promoting compounds, which are widely used in our daily diet to reduce the risk of chronic diseases such as cardiovascular diseases, cancer, acute lung injury, cataracts, neural disorders, etc. In this context, this review paper demonstrates the synthesis of carotenoids and their potential application in the food and pharmaceutical industries. However, the demand for carotenoid production is increasing overtime, and the extraction and production are expensive and technically challenging. The recent developments in carotenoid biosynthesis, and key challenges, bottlenecks, and future perspectives were also discussed to enhance the circular bioeconomy.


Subject(s)
Carotenoids , Fungi , Bacteria , Plants , Dietary Supplements
8.
Bioresour Technol ; 366: 128203, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36330969

ABSTRACT

Polyhydroxyalkanoates (PHA) are the more attractive sustainable green plastic, and it has the potential to replace petroleum-based plastics (PBP) in the global market. Recently, most of the developed and developing countries have banned the use of traditional PBP. This increases the demand for green plastic production and positively impacts the global market. Producing green plastic from various waste streams such as whey, animal, and crude glycerol will be eco-friendly and cost-effective. However, the factors influencing the environmental sustainability of PHA production from different waste streams are still unclear. This review could be reinforced concrete to researchers to gather deep knowledge on techno-economic analysis, life-cycle assessment, environmental and ecological risks caused during PHA production from different waste streams.


Subject(s)
Petroleum , Polyhydroxyalkanoates , Animals , Plastics , Whey
9.
Bioresour Technol ; 365: 128164, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36283675

ABSTRACT

Waste activated sludge is a renewable source for biohydrogen production, whereas the presence of complex biopolymers limits the hydrolysis step during this process, and thus pretreatment is required to disintegrate the sludge biomass. In this study, the feasibility of utilizing waste activated sludge to produce biohydrogen by improving the solubilization by means of thermo CaO2 engendered sonication disintegration (TCP-US) was studied. The optimized condition for extracellular polymeric substance (EPS) dissociation was obtained at the CaO2 dosage of 0.05 g/g SS at 70 °C. The maximum disintegration after EPS removal was achieved at the sonic specific energy input of 1612.8 kJ/kg TS with the maximum solubilization and SS reduction of 23.7% and 18.14%, respectively, which was higher than the US alone pretreatment. Thus, this solubilization yields higher biohydrogen production of 114.3 mLH2/gCOD in TCP-US sample.


Subject(s)
Sewage , Ultrasonics , Extracellular Polymeric Substance Matrix , Temperature , Waste Disposal, Fluid
10.
Bioresour Technol ; 364: 128103, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36243260

ABSTRACT

Algae biomass contains various biological elements, including lipids, proteins, and carbohydrates, making it a viable feedstock for manufacturing biofuels. However, the biggest obstacle to commercializing algal biofuels is their high production costs, primarily related to an algae culture. The extraction of additional high value added bioproducts from algal biomass is thus required to increase the economic viability of producing algae biofuel. This study aims to discuss the economic benefits of a zero-carbon economy and an environmentally sustainable algae resource in decarbonizing the environment through the manufacture of algal-based biofuels from algae biomass for a range of potential uses. In addition, research on the algae biorefineries, with an emphasis on case studies for various cultivation methods, as well as the commercialization of biofuel and bioenergy. Overall, the algal biorefinery offers fresh potential for synthesizing various products.

11.
Bioresour Technol ; 363: 127985, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126843

ABSTRACT

A significant ecological problem was developed on disposing the enormous amounts of waste activated sludge (WAS) produced by traditional wastewater treatment. There have been various attempts recently originated to develop innovative methods for substantial sludge treatment. The most frequently used approach for treating sludge to produces methane and reduces sludge is anaerobic treatment. The hydrolysis phase in WAS limits the breakdown of complex macrobiotic compounds. The presence of extracellular polymeric substances (EPS) in biomass prevents the substrate from being hydrolyzed. Enhancing substrate hydrolysis involves removal of EPS preceded by phase separated pretreatment. Hence, a critical assessment of various phase separated pretreatment that has a remarkable effect on the anaerobic digestion process was documented in detail. Moreover, the economic viability and energy requirement of this treatment process was also discussed. Perspectives and recommendations for methane production were also provided to attain effectual sludge management.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Hydrolysis , Methane/metabolism , Sewage/chemistry , Waste Disposal, Fluid/methods
12.
Bioresour Technol ; 361: 127634, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35863598

ABSTRACT

Disperser assisted homogenization is a promising mechanical based disintegration process to improve the substrate biodegradability and biogas recovery from biomass. During dispersion, the extent of liquefaction relies on the dispersion parameters and biomass properties. Hence, assessment of the optimal parameters varies with type of disperser and biomass. Dispersion assisted homogenization of some biomass such as sludge is not only studied in lab scale but also investigated in full scale plants providing positive outcome. For instance, the large-scale investigation of disperser homogenization has attained nearly 40-50 percent increment in bioenergy recovery. However, research gaps in terms of energy and cost efficiency still exists. This review paper outlines the impact of disperser parameters, its efficiency in biomass disintegration and biogas recovery. It has been proposed to combine homogenization process in the bioenergy generation to investigate the energy and cost efficiency of the entire process.


Subject(s)
Biofuels , Methane , Anaerobiosis , Biofuels/analysis , Biological Oxygen Demand Analysis , Biomass , Methane/analysis , Sewage/chemistry
13.
Bioresour Technol ; 358: 127437, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35680087

ABSTRACT

Urbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.


Subject(s)
Biofuels , Methane , Biomass , Fermentation , Hydrolysis
14.
Bioresour Technol ; 359: 127435, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35680092

ABSTRACT

Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.


Subject(s)
Bioelectric Energy Sources , Water Purification , Biofuels , Wastewater/analysis , Water Purification/methods
15.
Bioresour Technol ; 358: 127301, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35562024

ABSTRACT

Generation of excess sludge in large quantities from wastewater treatment plant face huge problem in terms of handling and management, whereas it possess higher organic and inorganic constituents and thus it can be used as a feedstock for the generation of biofuel with proper disintegration techniques.In this regard, an effort has been made in this study to combine thermo-chemo-disperser pretreatment for the disintegration of paper mill waste activated sludge for the production of biohydrogen in an energy efficient way. These combinations of thermo-chemo-disperser (TCD) tend to be effective in disintegration and possess 24.3% COD solubilization and higher suspended solid reduction of 18.8% at the specific energy usage of 2081.82 kJ/kg TS. The pretreatment with TCD technique shows the biohydrogen production of 120.2 mLH2/gCOD as compared to thermochemically pretreated alone (73.6 mLH2/gCOD) sample. Thus, the combined process was considered to be potentially effective in sludge disintegration.


Subject(s)
Sewage , Water Purification , Biofuels/analysis , Biological Oxygen Demand Analysis , Waste Disposal, Fluid/methods
16.
Bioresour Technol ; 350: 126904, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35227914

ABSTRACT

This research work aimed about the enhanced bio-hydrogen production from marine macro algal biomass (Ulva reticulate) through surfactant induced microwave disintegration (SIMD). Microwave disintegration (MD) was performed by varying the power from 90 to 630 W and time from 0 to 40 min. The maximum chemical oxygen demand (COD) solubilisation of 27.9% was achieved for MD at the optimal power (40%). A surfactant, ammonium dodecyl sulphate (ADS) is introduced in optimal power of MD which enhanced the solubilisation to 34.2% at 0.0035 g ADS/g TS dosage. The combined SIMD pretreatment significantly reduce the treatment time and increases the COD solubilisation when compared to MD. Maximum hydrogen yield of 54.9 mL H2 /g COD was observed for SIMD than other samples. In energy analysis, it was identified that SIMD was energy efficient process compared to others since SIMD achieved energy ratio of 1.04 which is higher than MD (0.38).


Subject(s)
Seaweed , Biomass , Microwaves , Surface-Active Agents/pharmacology , Thermodynamics
17.
Sci Total Environ ; 817: 152873, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-34998769

ABSTRACT

Regardless of the issue of sludge management all over the world, the role of phase separated pretreatment prior to anaerobic digestion are more promising in terms of energy efficient biomethane production. However, the effect of phase separated pretreatment (dissociation of extracellular polymeric substances (EPS) followed by biological pretreatment in a two-step process) must be sensibly evaluated from various perceptions to consolidate its effectiveness in sludge management and bioenergy recovery. In this study, mild hydrogen peroxide induced bacterial pretreatment (H2O2-BP) was employed as phase separated pretreatment to investigate the effectiveness of EPS dissociation prior to biological pretreatment on sludge solubilization and biomethanation. The novelty of this study is the application of mild dosage of hydrogen peroxide at sludge pH for the removal of EPS layer with lesser formation of recalcitrant substances which thereby enhances the disintegration by enzyme secreting bacterial and methane generation. The outcome confirmed that the higher EPS dissociation was achieved at H2O2 dosage of 8 µL per 100 mL of sludge with negligible cell lysis. An extractable EPS of 172.8 mg/L was obtained after H2O2 treatment. The higher sCOD solubilization of 22% and the suspended solid reduction of 17.14% were achieved in hydrogen peroxide followed by bacterial pretreatment (H2O2-BP) as compared to of bacterial pretreatment alone (BP) (solubilization-11% and suspended solids reduction-9.3%) and control (C) sludges (solubilization-5% and suspended solids reduction-4.3%). The methane generation for H2O2-BP sludge is 0.174 L/gCOD which is higher than BP (0.078 L/gCOD,) and C sludge (0.02175 L/gCOD). A higher biomass solubilization and increased biomethanation in H2O2-BP revealed that dissociation of EPS prior to bacterial pretreatment increases the surface area for bacterial pretreatment facilitating easier accessibility of substrate and enhanced biomethanation.


Subject(s)
Hydrogen Peroxide , Sewage , Anaerobiosis , Bacteria , Extracellular Polymeric Substance Matrix , Methane , Sewage/microbiology , Waste Disposal, Fluid
18.
Bioresour Technol ; 344(Pt B): 126245, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34743994

ABSTRACT

The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.


Subject(s)
Environmental Pollutants , Microalgae , Water Purification , Biodegradation, Environmental , Wastewater
19.
Bioresour Technol ; 344(Pt B): 126292, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34748984

ABSTRACT

Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.


Subject(s)
Biofuels , Ethanol , Biomass , Biotechnology , Fermentation , Hydrolysis , Lignin/metabolism
20.
Bioresour Technol ; 344(Pt B): 126224, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34751156

ABSTRACT

Succinic acid (SA) is a top platform chemical obtainable from biomass. The current study evaluated the potential of Actinobacillus succinogenes for SA production using xylose-rich hemicellulosic fractions of two important lignocellulosic feedstocks, olive pits (OP) and sugarcane bagasse (SCB) and the results were compared with pure xylose. Initial experiments were conducted in shake flask followed by batch and fed-batch cultivation in bioreactor. Further separation of SA from the fermented broth was carried out by adapting direct crystallisation method. During fed-batch culture, maximum SA titers of 36.7, 33.6, and 28.7 g/L was achieved on pure xylose, OP and SCB hydrolysates, respectively, with same conversion yield of 0.27 g/g. The recovery yield of SA accumulated on pure xylose, OP and SCB hydrolysates was 79.1, 76.5, and 75.2%, respectively. The results obtained are of substantial value and pave the way for development of sustainable SA biomanufacturing in an integrated biorefinery.


Subject(s)
Actinobacillus , Succinic Acid , Fermentation , Xylose
SELECTION OF CITATIONS
SEARCH DETAIL