Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Joint J ; 106-B(6): 632-638, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38821510

ABSTRACT

Aims: Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. Methods: A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Staphylococcus aureus. The bacterial burden was monitored using bioluminescence in vivo. All mice were killed on POD 21. Implants and soft-tissue were harvested and sonicated for analysis of the CFUs. Results: The mean in vivo bioluminescence in the VB group was significantly lower on POD 8 and POD 10 compared with the other groups. There was a significant 1.3-log10 (95%) and 1.5-log10 (97%) reduction in mean soft-tissue CFUs in the VB group compared with the VP and IC groups (3.6 × 103 vs 7.0 × 104; p = 0.022; 3.6 × 103 vs 1.0 × 105; p = 0.007, respectively) at POD 21. There was a significant 1.6-log10 (98%) reduction in mean implant CFUs in the VB group compared with the IC group (1.3 × 100 vs 4.7 × 101, respectively; p = 0.038). Combined soft-tissue and implant infection was prevented in 10 of 19 mice (53%) in the VB group as opposed to 5 of 21 (24%) in the VP group, 3 of 15 (20%) in the IC group, and 0% in the SV group. Conclusion: In our in vivo mouse model, antibiotic-releasing calcium sulphate beads appeared to outperform vancomycin powder alone in lowering the bacterial burden and preventing soft-tissue and implant infections.


Subject(s)
Anti-Bacterial Agents , Calcium Sulfate , Disease Models, Animal , Prosthesis-Related Infections , Staphylococcal Infections , Vancomycin , Animals , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/microbiology , Mice , Vancomycin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Staphylococcal Infections/prevention & control , Bacterial Load/drug effects , Staphylococcus aureus/drug effects , Random Allocation , Knee Prosthesis/adverse effects , Female
2.
Antibiotics (Basel) ; 12(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37887191

ABSTRACT

Bacterial biofilms on orthopedic implants are resistant to the host immune response and to traditional systemic antibiotics. Novel therapies are needed to improve patient outcomes. TRL1068 is a human monoclonal antibody (mAb) against a biofilm anchoring protein. For assessment of this agent in an orthopedic implant infection model, efficacy was measured by reduction in bacterial burden of Staphylococcus aureus, the most common pathogen for prosthetic joint infections (PJI). Systemic treatment with the biofilm disrupting mAb TRL1068 in conjunction with vancomycin eradicated S. aureus from steel pins implanted in the spine for 26 of 27 mice, significantly more than for vancomycin alone. The mechanism of action was elucidated by two microscopy studies. First, TRL1068 was localized to biofilm using a fluorescent antibody tag. Second, a qualitative effect on biofilm structure was observed using scanning electron microscopy (SEM) to examine steel pins that had been treated in vivo. SEM images of implants retrieved from control mice showed abundant three-dimensional biofilms, whereas those from mice treated with TRL1068 did not. Clinical Significance: TRL1068 binds at high affinity to S. aureus biofilms, thereby disrupting the three-dimensional structure and significantly reducing implant CFUs in a well-characterized orthopedic model for which prior tested agents have shown only partial efficacy. TRL1068 represents a promising systemic treatment for orthopedic implant infection.

3.
PLoS One ; 16(8): e0250910, 2021.
Article in English | MEDLINE | ID: mdl-34398899

ABSTRACT

INTRODUCTION: Periprosthetic joint infection (PJI) represents a devastating complication of total joint arthroplasty associated with significant morbidity and mortality. Literature suggests a possible higher incidence of periprosthetic joint infection (PJI) in patients with rheumatoid arthritis (RA). There is, however, no consensus on this purported risk nor a well-defined mechanism. This study investigates how collagen-induced arthritis (CIA), a validated animal model of RA, impacts infectious burden in a well-established model of PJI. METHODS: Control mice were compared against CIA mice. Whole blood samples were collected to quantify systemic IgG levels via ELISA. Ex vivo respiratory burst function was measured via dihydrorhodamine assay. Ex vivo Staphylococcus aureus Xen36 burden was measured directly via colony forming unit (CFU) counts and crystal violet assay to assess biofilm formation. In vivo, surgical placement of a titanium implant through the knee joint and inoculation with S. aureus Xen36 was performed. Bacterial burden was then quantified by longitudinal bioluminescent imaging. RESULTS: Mice with CIA demonstrated significantly higher levels of systemic IgG compared with control mice (p = 0.003). Ex vivo, there was no significant difference in respiratory burst function (p = 0.89) or S. aureus bacterial burden as measured by CFU counts (p = 0.91) and crystal violet assay (p = 0.96). In vivo, no significant difference in bacterial bioluminescence between groups was found at all postoperative time points. CFU counts of both the implant and the peri-implant tissue were not significantly different between groups (p = 0.82 and 0.80, respectively). CONCLUSION: This study demonstrated no significant difference in S. aureus infectious burden between mice with CIA and control mice. These results suggest that untreated, active RA may not represent a significant intrinsic risk factor for PJI, however further mechanistic translational and clinical studies are warranted.


Subject(s)
Arthritis, Experimental , Arthroplasty, Replacement, Knee , Bone-Implant Interface , Knee Joint , Knee Prosthesis/microbiology , Staphylococcal Infections , Staphylococcus aureus/metabolism , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/microbiology , Arthritis, Experimental/pathology , Bacterial Load , Bone-Implant Interface/microbiology , Bone-Implant Interface/pathology , Knee Joint/metabolism , Knee Joint/microbiology , Knee Joint/pathology , Knee Joint/surgery , Male , Mice , Risk Factors , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL