Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cureus ; 16(5): e60163, 2024 May.
Article in English | MEDLINE | ID: mdl-38868279

ABSTRACT

Background This study aimed to isolate linear polysaccharides from Sepia prashadi cuttlebone with the objective of evaluating their ability to scavenge free radicals. By providing new natural components for pharmaceutical and functional food uses, this research advances our understanding of the potential health benefits of polysaccharides originating from marine sources and their antioxidant properties. Objective The objective of the study is to isolate a linear polysaccharide chitosan from Sepia prashadi cuttlebone (produced by the partial deacetylation of chitin), characterize its structure using fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD), and explore the isolated polysaccharide's free radical scavenging potential. Material and methods Linear polysaccharide, chitosan was extracted chemically from Sepia prashadi from cuttlebone waste, by demineralization and deproteinization.Chemical characterization of chitosan was performed using Fourier transform infrared spectroscopy (FTIR) in the 400-4000 nm frequency range. The surface characteristics of chitosan, such as its texture, porosity, and roughness, are visible in scanning electron microscopy (SEM) images. X-ray diffraction (XRD) can be utilized to examine how chitosan interacts with other substances, such as medications or nanoparticles, by analyzing alterations in the diffraction pattern during complexation or formulation. Scavenging ability was demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide radical, and chelating ability of ferrous ions assays. Results  Chitosan is formed from chitin. The extraction yields of chitosan and chitin were 78% and 39%, respectively. High levels of superoxide radical scavenging activity (76.1%), DPPH radical scavenging activity (62.1%) and chelating activity (127.5% at 100 g/mL) were observed in cuttlebone chitosan. Sepia prashadi showed an increased antioxidant activity in chitosan. Conclusion The goal of this study was to determine the effectiveness of various extraction techniques for preserving the antioxidant activity of chitosan derived from Sepia prashadi cuttlebone waste. The maximum scavenging activity was demonstrated by both the chelating ability and antioxidant activity. Considering that this raw material is derived from renewable resources and produces highly valued chemicals, it is a profitable endeavor.

2.
Cureus ; 16(5): e60863, 2024 May.
Article in English | MEDLINE | ID: mdl-38910673

ABSTRACT

BACKGROUND: Dental materials with dentine regenerative properties are preferred over conventional materials. Calcium silicate cements, such as Biodentine, are bioactive and offer excellent sealing ability, making them ideal for various dental treatments. OBJECTIVES: This study aimed to fabricate bioactive calcium silicates infused with titanium (Ti) and strontium (Sr) to optimize their neo-angiogenic, antimicrobial, and regenerative properties while maintaining mechanical stability. METHODOLOGY: Ti- and Sr-infused calcium silicate cements were synthesized, and their mineral phases were characterized using X-ray diffraction. Morphological and elemental analyses were performed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). Raman spectroscopy was used to confirm the formation of bioactive material. A hemocompatibility assessment was conducted to evaluate blood compatibility. RESULTS: The presence of Ca2, SiO4, and SrTiO3 mineral phases indicated the successful infusion of Ti and Sr into the calcium silicate cement. FESEM and EDS revealed interconnected small spheres and rods in the silicate network with the relevant elemental compositions. Raman spectra verified that Si-O-Si and Ti-O-Ti vibrations exist, validating the formation of a bioactive material. The hemocompatibility assessment demonstrated optimal blood compatibility. CONCLUSIONS: This study successfully fabricated an improved calcium silicate-based material with enhanced regenerative properties and excellent biocompatibility. This newly formed substrate holds promise for providing superior restorative solutions and aiding in conservative treatment modalities during dental procedures.

6.
Cureus ; 16(1): e52131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38344562

ABSTRACT

BACKGROUND: Scientists are currently investigating ecologically sound and enduring techniques for nanoparticle production. Utilizing natural sources such as plant extracts provides an environmentally friendly and economically efficient method. Avicennia marina, also referred to as the gray mangrove, is predominantly located in coastal regions. The leaves of this plant may contain bioactive metabolites that can be used to synthesize nanoparticles. OBJECTIVES: This study aimed to synthesize silver nanoparticles (AgNPs) using A. marina leaf extract and subsequently assess their antibacterial properties against oral pathogens. MATERIALS AND METHODS: The present research involved the successful synthesis of AgNPs using an environmentally sustainable method employing the leaf extract of A. marina. The reduction of Ag ions to AgNPs was confirmed using UV-visible spectroscopy. This analytical technique revealed the presence of a distinct surface plasmon resonance peak at approximately 420 nm, which is indicative of the formation of AgNPs. Fourier transform infrared spectroscopy (FTIR) operating within the frequency range of 500-3500 cm-1 and scanning electron microscopy (SEM) morphology of the image indicated agglomeration of the nanoparticles, with distinct particles ranging from 10 to 20 nm and dense rod-shape, which was carried out from Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India. In energy-dispersive spectroscopy (EDS), a strong signal and maximum formation percentage were received at 42.7%, assigned to the element silver. RESULTS: AgNPs showed significant antibacterial efficacy against both gram-positive bacteria, including Staphylococcus aureus and Streptococcus mutans, and gram-negative bacteria, such as Klebsiella sp. In general, the use of A. marina leaf extract for the green synthesis of AgNPs is a viable and environmentally friendly approach for producing nanoparticles that exhibit favorable biological properties. Consequently, these nanoparticles hold considerable appeal as potential candidates for a range of biomedical applications, particularly as antibacterial agents. CONCLUSION: The synthesis of AgNPs using A. marina leaf extract shows great potential in the field of creating nanomaterials that are compatible with biological systems and is promising for a wide range of clinical applications. Nevertheless, it is imperative to conduct comprehensive scientific research and rigorous clinical trials to effectively apply these discoveries to real-world medical interventions, while prioritizing patient safety and therapeutic effectiveness.

7.
Mar Pollut Bull ; 200: 116139, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367585

ABSTRACT

Heavy metal pollution has significant impacts on aquatic fauna and flora. It accumulates in marine organisms, both plants and animals, which are then consumed by humans. This can lead to various health problems, such as organ damage and the development of cancer. Additionally, this pollution causes biological magnification, where the toxicity concentration gradually increases as aquatic organisms continuously accumulate metals. This process results in apoptotic mechanisms, antioxidant defence, and inflammation, which are reflected at the gene expression level. However, there is limited research on specific heavy metals and their effects on fish organs. The concentration of metal contamination and accumulation in different tropical environments is a concern due to their toxicity to living organisms. Therefore, this review focuses on determining the influences of metals on fish and their effects on specific organs, including DNA alterations.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Humans , Aquatic Organisms/metabolism , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Fishes/metabolism , DNA Damage , Environmental Monitoring
8.
Cureus ; 15(11): e48985, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38111453

ABSTRACT

BACKGROUND: Marine macroalgae is consumed by individuals in several regions, including Scandinavia, Great Britain, Ireland, China, and Japan; in Japan, it is commonly referred to as aosa. Copper nanoparticles are primarily composed of copper and exhibit a size distribution ranging from 1 to 100 nm. Copper nanoparticles can be synthesized using chemical or natural means, similar to other nanoparticle variants. The nanoparticles in question have garnered significant attention owing to their historical utilization as coloring agents, as well as their contemporary applicability in medicine and antibacterial treatments. OBJECTIVES: The objective of this study was to investigate the biosynthesis of copper nanoparticles derived from Ulva lactuca seaweed and explore their in vitro antioxidative potential. MATERIALS AND METHODS: Seaweed samples (10 g) were mixed with 50 ml of distilled water and placed in a shaker for two days. Copper sulfate (10 mM) was mixed with 100 ml of distilled water to obtain a copper (Cu) solution. Cu nanoparticles were then synthesized by adding the aqueous extract to 100 ml of the Cu solution and mixing it in an orbital shaker at 180 rpm for 24 hours. They were observed both visually and via ultraviolet (UV) spectrophotometry to confirm their nanoparticle synthesis. The initial reading was performed using a UV-visible spectrometer at 300-800 nm. The sample was centrifuged at approximately 8000 rpm for 15 minutes, the pellet was removed, and the pellet was dried in a hot-air oven. The synthesized Cu nanoparticles were then investigated using in vitro antioxidant assays. RESULT: The seaweed-derived copper nanoparticles exhibited a 1.2 peak absorbance at 580 nm. Various concentrations of copper nanoparticles (25, 50, 75, and 100 µg/ml) were tested for free radical scavenging. As the copper nanoparticle concentration increased, the scavenging ability on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals assay showed that the free radical scavenging activity increased in a dose-dependent manner. Similar to the DPPH assay, the total antioxidant and hydrogen peroxide (H2O2)assays showed increased free radical scavenging with increasing concentration. CONCLUSION: The application of Cu nanoparticles in the synthesis process has the potential to enhance the antioxidant activity of Ulva lactuca as evidenced by the observed increase in antioxidant capacity and defense against reactive oxygen species.

9.
Cureus ; 15(10): e47627, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022281

ABSTRACT

Introduction The field of nanotechnology is currently being extensively researched. Nanoparticles (NPs) are used in many fields, such as engineering and medicine, owing to their nanoscale dimensions. Zinc (Zn) appears to be the most desirable metal NP, as it is being applied in various drug delivery systems and other fields. The green synthesis of the NPs used in this study makes it affordable and nonpolluting. Avicennia marina leaves possess antimicrobial properties and a high secondary metabolite content. This study aimed to synthesize ZnO NPs from the aqueous extracts of A. marina mangrove leaves and assess their antibacterial activities against oral pathogens. Methodology The leaves of A. marina were dried to obtain a preprocessed powder, and from that, an aqueous extract was prepared. ZnO NPs were then synthesized by adding the aqueous extract to 100 mL of ZnS solution and mixing it in an orbital shaker. They were observed both visually and by ultraviolet (UV) spectrophotometry to confirm their synthesis. The antibacterial properties of these ZnO NPs were assayed using the disc diffusion method on three different oral bacterial strains (Streptococcus mutans, Staphylococcus aureus, and Klebsiella sp.).  Results For the synthesis process, it was seen that zinc oxide (ZnO) NPs exhibited a deepening in coloration. Additionally, the UV spectrum analysis revealed a notable absorbance value of 1.2 at a wavelength of 320 nm. The antibacterial efficacy against S. mutans, S. aureus, and Klebsiella sp. was assessed by measuring the zone of inhibition in diameter. At a dosage of 100 µg/mL of ZnO NPs, the inhibition zones were found to be 7.5 ± 0.2, 9.5 ± 0.5, and 9.5 ± 1.2 mm for S. mutans, S. aureus, and Klebsiella sp., respectively. Similarly, at a concentration of 75 µg/mL, the inhibition zones were measured to be 7 ± 0.25, 9 ± 1, and 7.5 ± 0.5 mm for the respective bacterial strains. Conclusions This study synthesizes ZnO NPs using A. marina leaf aqueous extract in a sustainable and eco-friendly manner. The ZnO NPs' antibacterial activities against oral infections indicate their use in dental products. These NPs have promising potential for nanomedicine and oral health studies due to their antibacterial properties and ecologically sustainable manufacturing.

10.
Environ Sci Pollut Res Int ; 30(57): 119594-119611, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945961

ABSTRACT

The primary natural resource we use in our daily lives for a variety of activities is freshwater for drinking and various developmental goals. Furthermore, the pace of human population increase worldwide is rising rapidly and has a great impact on the Earth's natural resources. Natural water quality has diminished owing to various anthropogenic activities. Water is crucial to the life cycle. On the other hand, chemical and agricultural industries pollute heavy metals. Acute and chronic diseases caused by heavy metals, such as slow metabolism and damage to the gills and epithelial layer of fish species, are divided into two categories. Pollutants can also harm liver tissues and result in ulceration as well as diseases such as fin rot, tail rot, and gill disease. The most prevalent heavy metals are As, Cr, Pb, and Hg, which are systemic toxicants that affect human health. These metals are categorized as carcinogens by the US Environmental Protection Agency and the worldwide agency for cancer research because they cause organ damage even at low exposure levels. The focus of the current study is to review various freshwater sources of heavy metal pollution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Humans , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Fishes/metabolism , Fresh Water , Environmental Monitoring , India , Water Quality , Risk Assessment
11.
Int J Biol Macromol ; 242(Pt 2): 124924, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37217051

ABSTRACT

Microbially influenced corrosion (MIC) of metals is an important industrial problem, causing 300-500 billion dollars of economic loss worldwide each year. It is very challenging to prevent or control the MIC in the marine environment. Eco-friendly coatings embedded with corrosion inhibitors developed from natural products may be a successful approach for MIC prevention or control. As a natural renewable resource, cephalopod chitosan has a number of unique biological properties, such as antibacterial, antifungal and non-toxicity effects, which attract scientific and industrial interests for potential applications. Chitosan is a positively charged molecule, and the negatively charged bacterial cell wall is the target of its antimicrobial action. Chitosan binds to the bacterial cell wall and disrupts the normal functions of the membrane by, for example, facilitating the leakage of intracellular components and impeding the transport of nutrients into the cells. Interestingly, chitosan is an excellent film-forming polymer. Chitosan may be applied as an antimicrobial coating substance for the prevention or control of MIC. Furthermore, the antimicrobial chitosan coating can serve as a basal matrix, in which other antimicrobial or anticorrosive substances like chitosan nanoparticles, chitosan silver nanoparticles, quorum sensing inhibitors (QSI) or the combination of these compounds, can be embedded to achieve synergistic anticorrosive effects. A combination of field and laboratory experiments will be conducted to test this hypothesis for preventing or controlling MIC in the marine environment. Thus, the proposed review will identify new eco-friendly MIC inhibitors and will assay their potential in future applications in the anti-corrosion industry.


Subject(s)
Anti-Infective Agents , Chitosan , Metal Nanoparticles , Chitosan/pharmacology , Silver/pharmacology , Anti-Bacterial Agents/pharmacology
12.
J Proteins Proteom ; 14(1): 43-59, 2023.
Article in English | MEDLINE | ID: mdl-36597476

ABSTRACT

The rapid advancement of molecular research has contributed to the discovery of 'Lectin', a carbohydrate-binding protein which specifically interacts with receptors on surface glycan moieties that regulate various critical cellular activities. The first animal lectin reported was 'the asialoglycoprotein receptor' in mammalian cells which helped analyze how animal lectins differ in glycoconjugate binding. Animal lectins are classified into several families, depending on their diverse cellular localization, and the binding specificities of their Carbohydrate-Recognition Domain (CRD) modules. Earlier characterization of animal lectins classified them into two structural families, the C-type (Ca2+-dependent binding) and S-type galectins (sulfhydryl-dependent binding) lectins. The C-type lectin includes the most significant animal lectins, such as endocytic receptors, mannose receptors, selectins, and collectins. The recent developments in research based on the complexity of the carbohydrate ligands, the metabolic processes they perform, their expression levels, and their reliance on divalent cations have identified more than 100 animal lectins and classified them into around 13 different families, such as Calnexin, F-lectin, Intelectin, Chitinase-like lectin, F-box lectin, etc. Understanding their structure and expression patterns have aided in defining their significant functions including cell adhesion, antimicrobial activity, innate immunity, disease diagnostic biomarkers, and drug delivery through specific carbohydrate-protein interactions. Such extensive potential roles of animal lectins made it equally important to plant lectins among researchers. Hence, the review focuses on providing an overview of animal lectins, their taxonomy, structural characteristics, and functions in diverse aspects interconnected to their specific carbohydrate and glycoconjugate binding.

14.
Aquac Int ; 31(2): 867-891, 2023.
Article in English | MEDLINE | ID: mdl-36407965

ABSTRACT

The prevalence of infectious diseases in the aquaculture industry and a limited number of safe and effective oral vaccines has imposed a challenge not only for fish immunity but also a threat to human health. The availability of fish oral vaccines has expanded recently, but little is known about how well they work and how they affect the immune system. The unsatisfactory efficacy of existing oral vaccinations is partly attributable to the antigen degradation in the adverse gastrointestinal environment of fishes, the highly tolerogenic gut environment, and inferior vaccine formulation. To overcome such challenges in designing: an easier, cost-efficient, and effective vaccination method, several encapsulation methods are being adopted to safeguard antigens from the intestinal atmosphere for their immunogenic functions. Oral vaccination is easily degraded by gastric acids and enzymes before reaching the immunological site; however, this issue can be solved by encapsulating antigens in poly-biodegradable nanoparticles, transgenic designed bacteria, plant systems, and live feeds. To enhance the immunological impact, each antigen delivery method operates at a different level. Utilizing nanotechnology, it has been possible to regulate vaccination parameters, target particular cells, and lower the antigen dosage with potent nanomaterials such as chitosan, poly D,L-lactic-co-glycolic acid (PLGA) as vaccine carriers. Live feeds such as Artemia salina can be utilized as bio-carrier, owing to their appropriate size and non-filter feed system, through a process called bio-encapsulation. It ensures the protection of antigens over the fish intestine and ensures complete uptake by immune cells in the hindgut for increased immune response. This review comprises recent advances in oral vaccination in aquaculture in terms of an encapsulation approach that can aid in future research.

15.
Nat Prod Res ; 36(12): 3216-3222, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34304652

ABSTRACT

The present work aimed to synthesis of chitin, chitosan and sulfation of chitosan from cuttlebone of cuttlefish Sepia kobiensis. Principally chitin was extracted through sequential processes of demineralisation and deproteinzation. Then chitosan was synthesized by a deacetylation and finally sulfated at semi-heterogeneous condition using chlorosulfonic acid in N,N-dimethylformamide. The synthesized macromolecules were characterized for its structural, physical and thermal (CHN, DDA, FT-IR, NMR, XRD, Viscometric analysis, SEM and DSC) properties. Apart from anticoagulant potential of the sulfated chitosan was tested using human plasma by means of activated partial thromboplastin time (APTT) and prothrombin time (PT). Further sulfated chitosan was tested for antibacterial potential by well diffusion method against eleven human pathogenic clinical isolates of both Gram positive and Gram-negative strains and minimum inhibitory concentrations (MIC) was calculated accordingly. The results of this study revealed the effectiveness of the sulfated chitosan at semi-heterogeneous conditions as a potent antibacterial and anticoagulant molecule.


Subject(s)
Chitosan , Sepia , Animals , Anti-Bacterial Agents/pharmacology , Anticoagulants/chemistry , Anticoagulants/pharmacology , Chitin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Humans , Sepia/chemistry , Spectroscopy, Fourier Transform Infrared , Sulfates
16.
Environ Sci Pollut Res Int ; 26(17): 17845-17852, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31041713

ABSTRACT

Worldwide, reef building corals are being degraded due to increasing anthropogenic pressure, and as a result, macroalgal cover is being increased. Hence, mechanism of coral-algal interaction, differential coral response to algal overgrowth, is critical from every geographical location to predict future coral dynamics. This paper documents the frequency of coral-algal (Halimeda) interactions, differential coral response to algal interaction. We found difference in susceptibility among coral genera to competitive effects. Out of 970 coral colonies surveyed, 36.7% were in contact with Halimeda sp. Most frequent contact was observed in Porites (57%) followed by Favites 28% (n = 60), Acropora 26% (n = 48), Platygyra 5% (n = 5) and Symphyllia 4.2% (n = 3). Frequent discoloration and tissue loss were only observed in Porites. Continuous monitoring revealed that long-term algal physical contact prevents light required for polyp for photosynthesis and stops coral feeding ability. In this study, we also found mutual exclusion between Halimeda and coral recruit. Out of 180 coral colonies (size class between 5 and 15 cm) comprised of Favites (n = 74), Acropora (n = 20), Favia (n = 79) and Porites (n = 7) surveyed, none of them were found in Halimeda-dominated sites. The documented effects of recruitment exclusion and tissue mortality followed by algal interaction on major reef building corals (Porites) could affect replenishing process and health of the remaining healthy corals in the Palk Bay reef if algal proliferation rate is not controlled through proper management strategies.


Subject(s)
Anthozoa/physiology , Chlorophyta/physiology , Coral Reefs , Animals , Anthozoa/microbiology , India
17.
Mar Environ Res ; 140: 169-179, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29935729

ABSTRACT

Sponges are sessile benthic filter-feeding animals, which harbor numerous microorganisms. The enormous diversity and abundance of sponge associated bacteria envisages sponges as hot spots of microbial diversity and dynamics. Many theories were proposed on the ecological implications and mechanism of sponge-microbial association, among these, the biosynthesis of sponge derived bioactive molecules by the symbiotic bacteria is now well-indicated. This phenomenon however, is not exhibited by all marine sponges. Based on the available reports, it has been well established that the sponge associated microbial assemblages keep on changing continuously in response to environmental pressure and/or acquisition of microbes from surrounding seawater or associated macroorganisms. In this review, we have discussed nutritional association of sponges with its symbionts, interaction of sponges with other eukaryotic organisms, dynamics of sponge microbiome and sponge-specific microbial symbionts, sponge-coral association etc.


Subject(s)
Microbiota , Porifera/physiology , Symbiosis , Animals , Bacteria/genetics , Biodiversity , Phylogeny , Porifera/microbiology , RNA, Ribosomal, 16S , Seawater/microbiology
18.
Int J Biol Macromol ; 112: 1278-1288, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29371150

ABSTRACT

The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products.


Subject(s)
Aquatic Organisms/chemistry , Synthetic Biology/methods , Biofilms , Biological Products/pharmacology , Metabolic Engineering , Robotics , Synthetic Biology/ethics
19.
Biochem Biophys Rep ; 10: 39-45, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955735

ABSTRACT

Type I collagen from outer skin of Sepia pharaonis was extracted and partially characterized. Yield of Acid Soluble Collagen (ASC) and Pepsin Soluble Collagen (PSC) were calculated as 1.66% and 3.93% and the total protein content of ASC and PSC were found as 18.4% and 48.6%. FT-IR spectrum of ASC and PSC recorded 12 and 14 peaks, respectively. 1H NMR spectrum of ASC showed singlets at 1.23 ppm, 3.1 ppm, 3.55 ppm and 3.7 ppm and PSC at 1.23 ppm and 2.08 ppm. The molecular weight for ASC was calculated as 102 kDa and for PSC as 110, 108 and 102 kDa through SDS-PAGE. Differential Scanning Calorimetry (DSC) results supported that PSC withstand high thermal stability (82.85 °C) than ASC (73.13 °C). Higher denaturation temperature with high molecular weight well support the property of type I collagen from skin of S. pharaonis and it could be used as another potent source for the extraction of collagen.

20.
Int J Biol Macromol ; 99: 682-691, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28284937

ABSTRACT

Chitosan was extracted from the pen of squid Doryteuthis singhalensis and characterized using FT-IR, NMR, CHN, SEM and DSC analysis. Purified chitosan was sulfated with chlorosulfonic acid in N,N-dimethylformamide and the added sulfate group was confirmed with FT-IR analysis. The molecular weight and degree of deacetylation (DDA) of chitosan was found 226.6kDa and 83.76% respectively. Chitosan exhibited potent antioxidant activity evidenced by reducing power, chelating ability on ferrous ions and scavenging activity on DPPH, superoxide and hydroxyl radicals. The anticoagulant assay using activated partial thromboplastin time (APTT) and prothrombin time (PT) showed chitosan as a strong anticoagulant. The results of this study showed possibility of using D. singhalensis pen as a non-conventional source of natural antioxidants and anticoagulant which can be incorporated in functional food formulations.


Subject(s)
Anticoagulants/chemistry , Anticoagulants/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Decapodiformes/chemistry , Acetylation , Animals , Anticoagulants/isolation & purification , Antioxidants/isolation & purification , Chitosan/isolation & purification , Free Radicals/chemistry , Humans , Iron/chemistry , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL