Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
bioRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948725

ABSTRACT

Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While primarily a motor disorder, psychiatric and cognitive symptoms have been reported. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms. Using transparent polymer skulls and CNS-wide GCaMP6f expression, we studied neocortical networks throughout SCA8 progression using wide-field Ca2+ imaging in a transgenic mouse model of SCA8. We observed that neocortical networks in SCA8+ mice were hyperconnected globally which led to network configurations with increased global efficiency and centrality. At the regional level, significant network changes occurred in nearly all cortical regions, however mainly involved sensory and association cortices. Changes in functional connectivity in anterior motor regions worsened later in the disease. Near perfect decoding of animal genotype was obtained using a generalized linear model based on canonical correlation strengths between activity in cortical regions. The major contributors to decoding were concentrated in the somatosensory, higher visual and retrosplenial cortices and occasionally extended into the motor regions, demonstrating that the areas with the largest network changes are predictive of disease state.

2.
Neuron ; 112(3): 362-383.e15, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38016472

ABSTRACT

Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.


Subject(s)
Spinocerebellar Ataxias , Animals , Mice , Humans , Ataxin-1/genetics , Mice, Transgenic , Spinocerebellar Ataxias/metabolism , Cerebellum/metabolism , Purkinje Cells/metabolism , Disease Models, Animal
3.
Hum Genet ; 142(12): 1747-1754, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957369

ABSTRACT

Machado-Joseph disease (MJD/SCA3) is the most frequent dominant ataxia worldwide. It is caused by a (CAG)n expansion. MJD has two major ancestral backgrounds: the Machado lineage, found mainly in Portuguese families; and the Joseph lineage, present in all five continents, probably originating in Asia. MJD has been described in a few African and African-American families, but here we report the first diagnosed in Sudan to our knowledge. The proband presented with gait ataxia at age 24; followed by muscle cramps and spasticity, and dysarthria, by age 26; he was wheel-chair bound at 29 years of age. His brother had gait problems from age 20 years and, by age 21, lost the ability to run, showed dysarthria and muscle cramps. To assess the mutational origin of this family, we genotyped 30 SNPs and 7 STRs flanking the ATXN3_CAG repeat in three siblings and the non-transmitting father. We compared the MJD haplotype segregating in the family with our cohort of MJD families from diverse populations. Unlike all other known families of African origin, the Machado lineage was observed in Sudan, being shared with 86 Portuguese, 2 Spanish and 2 North-American families. The STR-based haplotype of Sudanese patients, however, was distinct, being four steps (2 STR mutations and 2 recombinations) away from the founder haplotype shared by 47 families, all of Portuguese extraction. Based on the phylogenetic network constructed with all MJD families of the Machado lineage, we estimated a common ancestry at 3211 ± 693 years ago.


Subject(s)
Machado-Joseph Disease , Male , Humans , Young Adult , Adult , Machado-Joseph Disease/genetics , Machado-Joseph Disease/diagnosis , Portugal , Muscle Cramp , Dysarthria , Phylogeny , Africa, Eastern
4.
Brain ; 146(10): 4217-4232, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37143315

ABSTRACT

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Subject(s)
Myotonic Dystrophy , Humans , Female , Mice , Animals , Myotonic Dystrophy/genetics , Choroid Plexus/metabolism , Choroid Plexus/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , RNA/genetics , Mice, Knockout , Trinucleotide Repeat Expansion
5.
Ann Neurol ; 93(2): 398-416, 2023 02.
Article in English | MEDLINE | ID: mdl-36151701

ABSTRACT

OBJECTIVE: The mechanistic target of rapamycin (mTOR) kinase is one of the master coordinators of cellular stress responses, regulating metabolism, autophagy, and apoptosis. We recently reported that staufen1 (STAU1), a stress granule (SG) protein, was overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis, frontotemporal degeneration, Huntington's, Alzheimer's, and Parkinson's diseases as well as animal models, and patient tissues. STAU1 overabundance is associated with mTOR hyperactivation and links SG formation with autophagy. Our objective was to determine the mechanism of mTOR regulation by STAU1. METHODS: We determined STAU1 abundance with disease- and chemical-induced cellular stressors in patient cells and animal models. We also used RNA-binding assays to contextualize STAU1 interaction with MTOR mRNA. RESULTS: STAU1 and mTOR were overabundant in bacterial artificial chromosome (BAC)-C9ORF72, ATXN2Q127 , and Thy1-TDP-43 transgenic mouse models. Reducing STAU1 levels in these mice normalized mTOR levels and activity and autophagy-related marker proteins. We also saw increased STAU1 levels in HEK293 cells transfected to express C9ORF72-relevant dipeptide repeats (DPRs). Conversely, DPR accumulations were not observed in cells treated by STAU1 RNA interference (RNAi). Overexpression of STAU1 in HEK293 cells increased mTOR levels through direct MTOR mRNA interaction, activating downstream targets and impairing autophagic flux. Targeting mTOR by rapamycin or RNAi normalized STAU1 abundance in an SCA2 cellular model. INTERPRETATION: STAU1 interaction with mTOR drives its hyperactivation and inhibits autophagic flux in multiple models of neurodegeneration. Staufen, therefore, constitutes a novel target to modulate mTOR activity and autophagy, and for the treatment of neurodegenerative diseases. ANN NEUROL 2023;93:398-416.


Subject(s)
Spinocerebellar Ataxias , TOR Serine-Threonine Kinases , Humans , Mice , Animals , C9orf72 Protein , HEK293 Cells , TOR Serine-Threonine Kinases/metabolism , Mice, Transgenic , Autophagy , RNA, Messenger , Sirolimus , Cytoskeletal Proteins/genetics , RNA-Binding Proteins/metabolism
6.
iScience ; 25(5): 104198, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35479399

ABSTRACT

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are common forms of adult onset muscular dystrophy. Pathogenesis in both diseases is largely driven by production of toxic-expanded repeat RNAs that sequester MBNL RNA-binding proteins, causing mis-splicing. Given this shared pathogenesis, we hypothesized that diamidines, small molecules that rescue mis-splicing in DM1 models, could also rescue mis-splicing in DM2 models. While several DM1 cell models exist, few are available for DM2 limiting research and therapeutic development. Here, we characterize DM1 and DM2 patient-derived fibroblasts for use in small molecule screens and therapeutic studies. We identify mis-splicing events unique to DM2 fibroblasts and common events shared with DM1 fibroblasts. We show that diamidines can partially rescue molecular phenotypes in both DM1 and DM2 fibroblasts. This study demonstrates the potential of fibroblasts as models for DM1 and DM2, which will help meet an important need for well-characterized DM2 cell models.

7.
Neuron ; 110(7): 1173-1192.e7, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35114102

ABSTRACT

In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes. Unlike prior mHTT transgenic models with stable, CAA-interrupted, polyglutamine-encoding repeats, BAC-CAG mice show robust striatum-selective nuclear inclusions and transcriptional dysregulation resembling those in murine huntingtin knockin models and HD patients. Importantly, the striatal transcriptionopathy in HD models is significantly correlated with their uninterrupted CAG repeat length but not polyglutamine length. Finally, among the pathogenic entities originating from mHTT genomic transgenes and only present or enriched in the uninterrupted CAG repeat model, somatic CAG repeat instability and nuclear mHTT aggregation are best correlated with early-onset striatum-selective molecular pathogenesis and locomotor and sleep deficits, while repeat RNA-associated pathologies and repeat-associated non-AUG (RAN) translation may play less selective or late pathogenic roles, respectively.


Subject(s)
Huntington Disease , Nerve Tissue Proteins , Animals , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Trinucleotide Repeat Expansion/genetics
8.
Curr Opin Neurobiol ; 72: 160-170, 2022 02.
Article in English | MEDLINE | ID: mdl-34953315

ABSTRACT

Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.


Subject(s)
Neurodegenerative Diseases , Animals , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Proteins , ran GTP-Binding Protein
9.
Curr Opin Neurol ; 34(5): 748-755, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34392299

ABSTRACT

PURPOSE OF REVIEW: An intronic G4C2 expansion mutation in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Although there are currently no treatments for this insidious, fatal disease, intense research has led to promising therapeutic strategies, which will be discussed here. RECENT FINDINGS: Therapeutic strategies for C9-ALS/FTD have primarily focused on reducing the toxic effects of mutant expansion RNAs or the dipeptide repeat proteins (DPRs). The pathogenic effects of G4C2 expansion transcripts have been targeted using approaches aimed at promoting their degradation, inhibiting nuclear export or silencing transcription. Other promising strategies include immunotherapy to reduce the DPRs themselves, reducing RAN translation, removing the repeats using DNA or RNA editing and manipulation of downstream disease-altered stress granule pathways. Finally, understanding the molecular triggers that lead to pheno-conversion may lead to opportunities that can delay symptomatic disease onset. SUMMARY: A large body of evidence implicates RAN-translated DPRs as a main driver of C9-ALS/FTD. Promising therapeutic strategies for these devastating diseases are being rapidly developed with several approaches already in or approaching clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/therapy , Humans , Proteins , Stress Granules
10.
Hum Mol Genet ; 30(11): 1020-1029, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33856033

ABSTRACT

Repeat-associated non-ATG (RAN) proteins have been reported in 11 microsatellite expansion disorders but the factors that allow RAN translation to occur and the effects of different repeat motifs and alternative AUG-like initiation codons are unclear. We studied the mechanisms of RAN translation across myotonic dystrophy type 2 (DM2) expansion transcripts with (CCUG) or without (CAGG) efficient alternative AUG-like codons. To better understand how DM2 LPAC and QAGR RAN proteins are expressed, we generated a series of CRISPR/Cas9-edited HEK293T cell lines. We show that LPAC and QAGR RAN protein levels are reduced in protein kinase R (PKR)-/- and PKR-like endoplasmic reticulum kinase (PERK)-/- cells, with more substantial reductions of CAGG-encoded QAGR in PKR-/- cells. Experiments using mutant eIF2α-S51A HEK293T cells show that p-eIF2α is required for QAGR production. In contrast, LPAC levels were only partially reduced in these cells, suggesting that both non-AUG and close-cognate initiation occur across CCUG RNAs. Overexpression of the alternative initiation factor eIF2A increases LPAC and QAGR protein levels but, notably, has a much larger effect on QAGR expressed from CAGG-expansion RNAs that lack efficient close-cognate codons. The effects of eIF2A on increasing LPAC are consistent with previous reports that eIF2A affects CUG-initiation translation. The observation that eIF2A also increases QAGR proteins is novel because CAGG expansion transcripts do not contain CUG or similarly efficient close-cognate AUG-like codons. For QAGR but not LPAC, the eIF2A-dependent increases are not seen when p-eIF2α is blocked. These data highlight the differential regulation of DM2 RAN proteins and eIF2A as a potential therapeutic target for DM2 and other RAN diseases.


Subject(s)
Eukaryotic Initiation Factor-2/genetics , Myotonic Dystrophy/genetics , eIF-2 Kinase/genetics , CRISPR-Cas Systems/genetics , DNA Repeat Expansion/genetics , HEK293 Cells , Humans , Microsatellite Repeats/genetics , Myotonic Dystrophy/physiopathology , Protein Biosynthesis/genetics
11.
Hum Mol Genet ; 29(24): 3900-3918, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33378537

ABSTRACT

C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes. Transcriptomic changes in cell proliferation, inflammation and neuronal pathways are found late in disease and alternative splicing changes provide early molecular markers that worsen with disease progression. Isogenic sublines of mice with 800, 500 or 50 G4C2 repeats generated from the single-copy C9-500 line show longer repeats result in earlier onset, increased disease penetrance and increased levels of RNA foci and dipeptide RAN protein aggregates. These data demonstrate G4C2 repeat length is an important driver of disease and identify alternative splicing changes as early biomarkers of C9orf72 ALS/FTD.


Subject(s)
Alternative Splicing , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , DNA Repeat Expansion , Disease Models, Animal , Frontotemporal Dementia/pathology , Penetrance , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , Frontotemporal Dementia/etiology , Frontotemporal Dementia/metabolism , Humans , Mice , Mice, Transgenic , Mutation , Phenotype
12.
Neuron ; 108(4): 784-796.e3, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33022226

ABSTRACT

Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016). We discuss methodological differences between the Mordes and Liu studies, several additional studies in which survival and motor phenotypes were found, and possible environmental and genetic effects. First, Nguyen et al. (2020) showed robust ALS/FTD phenotypes in C9-BAC versus non-transgenic (NT) mice and that α-GA1 treatment improved survival, behavior, and neurodegeneration. The groups of Gelbard and Saxena also show decreased survival of C9-BAC versus NT mice and neuropathological and behavioral deficits similar to those shown by Liu et al. (2016). Although FVB/N mice can have seizures, increases in seizure severity and death of C9 and NT animals, which may mask C9 disease phenotypes, have been observed in recent C9-500 FVB/NJ-bred cohorts. In summary, we provide an update on phenotypes seen in FVB C9-BAC mice and additional details to successfully use this model. This Matters Arising Response paper addresses the Mordes et al. (2020) Matters Arising paper, published concurrently in Neuron.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Animals , C9orf72 Protein/genetics , DNA Repeat Expansion , Disease Models, Animal , Frontotemporal Dementia/genetics , Mice , Mice, Transgenic , Phenotype
13.
Proc Natl Acad Sci U S A ; 117(31): 18591-18599, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690681

ABSTRACT

Repeat associated non-AUG (RAN) translation is found in a growing number of microsatellite expansion diseases, but the mechanisms remain unclear. We show that RAN translation is highly regulated by the double-stranded RNA-dependent protein kinase (PKR). In cells, structured CAG, CCUG, CAGG, and G4C2 expansion RNAs activate PKR, which leads to increased levels of multiple RAN proteins. Blocking PKR using PKR-K296R, the TAR RNA binding protein or PKR-KO cells, reduces RAN protein levels. p-PKR is elevated in C9orf72 ALS/FTD human and mouse brains, and inhibiting PKR in C9orf72 BAC transgenic mice using AAV-PKR-K296R or the Food and Drug Administration (FDA)-approved drug metformin, decreases RAN proteins, and improves behavior and pathology. In summary, targeting PKR, including by use of metformin, is a promising therapeutic approach for C9orf72 ALS/FTD and other expansion diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein , Metformin/pharmacology , Protein Biosynthesis/drug effects , eIF-2 Kinase , Animals , Brain/metabolism , Brain/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Disease Models, Animal , Frontotemporal Dementia/metabolism , Humans , Mice , Mice, Transgenic , Microsatellite Repeats/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
14.
Nat Commun ; 11(1): 2022, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332745

ABSTRACT

The thymus is a primary lymphoid organ that plays an essential role in T lymphocyte maturation and selection during development of one arm of the mammalian adaptive immune response. Although transcriptional mechanisms have been well documented in thymocyte development, co-/post-transcriptional modifications are also important but have received less attention. Here we demonstrate that the RNA alternative splicing factor MBNL1, which is sequestered in nuclear RNA foci by C(C)UG microsatellite expansions in myotonic dystrophy (DM), is essential for normal thymus development and function. Mbnl1 129S1 knockout mice develop postnatal thymic hyperplasia with thymocyte accumulation. Transcriptome analysis indicates numerous gene expression and RNA mis-splicing events, including transcription factors from the TCF/LEF family. CNBP, the gene containing an intronic CCTG microsatellite expansion in DM type 2 (DM2), is coordinately expressed with MBNL1 in the developing thymus and DM2 CCTG expansions induce similar transcriptome alterations in DM2 blood, which thus serve as disease-specific biomarkers.


Subject(s)
DNA-Binding Proteins/genetics , Myotonic Dystrophy/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Thymus Gland/growth & development , Adult , Aged , Aged, 80 and over , Animals , DNA Repeat Expansion , DNA-Binding Proteins/metabolism , Female , Humans , Introns/genetics , Male , Mice , Mice, Knockout , Microsatellite Repeats/genetics , Middle Aged , Myotonic Dystrophy/blood , Myotonic Dystrophy/immunology , RNA Splicing/immunology , RNA-Seq , Thymus Gland/immunology , Young Adult
15.
Neuron ; 105(4): 645-662.e11, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31831332

ABSTRACT

The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice. In cells, α-GA1 interacts with TRIM21, and α-GA1 treatment reduced GA levels, increased GA turnover, and decreased RAN toxicity and co-aggregation of proteasome and autophagy proteins to GA aggregates. In C9-BAC mice, α-GA1 reduced GA as well as GP and GR proteins, improved behavioral deficits, decreased neuroinflammation and neurodegeneration, and increased survival. Glycosylation of the Fc region of α-GA1 is important for cell entry and efficacy. These data demonstrate that RAN proteins drive C9-ALS/FTD in C9-BAC transgenic mice and establish a novel therapeutic approach for C9orf72 ALS/FTD and other RAN-protein diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Antibodies, Monoclonal/genetics , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Genetic Therapy/methods , ran GTP-Binding Protein/metabolism , Aged , Amyotrophic Lateral Sclerosis/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Brain/metabolism , C9orf72 Protein/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Frontotemporal Dementia/metabolism , Gene Targeting/methods , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Random Allocation , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , ran GTP-Binding Protein/antagonists & inhibitors
16.
Lab Invest ; 99(7): 929-942, 2019 07.
Article in English | MEDLINE | ID: mdl-30918326

ABSTRACT

More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.


Subject(s)
Microsatellite Repeats , Nervous System Diseases/genetics , Proteostasis Deficiencies/etiology , Animals , Gene Expression , Humans , Proteostasis Deficiencies/therapy
17.
Annu Rev Neurosci ; 42: 227-247, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30909783

ABSTRACT

Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.


Subject(s)
DNA Repeat Expansion/genetics , Nerve Tissue Proteins/genetics , Nervous System Diseases/genetics , Protein Biosynthesis , Codon, Initiator/genetics , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/physiology , Gain of Function Mutation , Genetic Code , Humans , Loss of Function Mutation , Microsatellite Repeats/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Transcription, Genetic
18.
J Biol Chem ; 293(42): 16127-16141, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30213863

ABSTRACT

Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.


Subject(s)
DNA Repeat Expansion , Microsatellite Repeats , Nervous System Diseases/genetics , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein , Dipeptides , Frontotemporal Dementia/genetics , Gene Expression , Huntington Disease/genetics , Mutation , Myotonic Dystrophy/genetics
19.
Article in English | MEDLINE | ID: mdl-29891563

ABSTRACT

More than 40 different neurological diseases are caused by microsatellite repeat expansions that locate within translated or untranslated gene regions, including 5' and 3' untranslated regions (UTRs), introns, and protein-coding regions. Expansion mutations are transcribed bidirectionally and have been shown to give rise to proteins, which are synthesized from three reading frames in the absence of an AUG initiation codon through a novel process called repeat-associated non-ATG (RAN) translation. RAN proteins, which were first described in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), have now been reported in a growing list of microsatellite expansion diseases. This article reviews what is currently known about RAN proteins in microsatellite expansion diseases and experiments that provide clues on how RAN translation is regulated.


Subject(s)
Central Nervous System Diseases/genetics , Protein Biosynthesis/genetics , Genetic Predisposition to Disease , Humans , Microsatellite Repeats
20.
Proc Natl Acad Sci U S A ; 115(16): 4234-4239, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610297

ABSTRACT

Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Fuchs' Endothelial Dystrophy/genetics , Introns/genetics , Myotonic Dystrophy/genetics , Base Composition , Biomarkers , Humans , Lymphocytes/chemistry , Muscle, Skeletal/chemistry , Myocardium/chemistry , Organ Specificity , Polymorphism, Single Nucleotide , RNA Splicing , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...