Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Leukemia ; 31(2): 382-392, 2017 02.
Article in English | MEDLINE | ID: mdl-27479184

ABSTRACT

The notion that plasma cells (PCs) are terminally differentiated has prevented intensive research in multiple myeloma (MM) about their phenotypic plasticity and differentiation. Here, we demonstrated in healthy individuals (n=20) that the CD19-CD81 expression axis identifies three bone marrow (BM)PC subsets with distinct age-prevalence, proliferation, replication-history, immunoglobulin-production, and phenotype, consistent with progressively increased differentiation from CD19+CD81+ into CD19-CD81+ and CD19-CD81- BMPCs. Afterwards, we demonstrated in 225 newly diagnosed MM patients that, comparing to normal BMPC counterparts, 59% had fully differentiated (CD19-CD81-) clones, 38% intermediate-differentiated (CD19-CD81+) and 3% less-differentiated (CD19+CD81+) clones. The latter patients had dismal outcome, and PC differentiation emerged as an independent prognostic marker for progression-free (HR: 1.7; P=0.005) and overall survival (HR: 2.1; P=0.006). Longitudinal comparison of diagnostic vs minimal-residual-disease samples (n=40) unraveled that in 20% of patients, less-differentiated PCs subclones become enriched after therapy-induced pressure. We also revealed that CD81 expression is epigenetically regulated, that less-differentiated clonal PCs retain high expression of genes related to preceding B-cell stages (for example: PAX5), and show distinct mutation profile vs fully differentiated PC clones within individual patients. Together, we shed new light into PC plasticity and demonstrated that MM patients harbouring less-differentiated PCs have dismal survival, which might be related to higher chemoresistant potential plus different molecular and genomic profiles.


Subject(s)
Multiple Myeloma/diagnosis , Multiple Myeloma/metabolism , Plasma Cells/metabolism , Plasma Cells/pathology , Adult , Antigens, CD/metabolism , Biomarkers , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Case-Control Studies , Cell Cycle , DNA Methylation , Female , Gene Expression Profiling , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , In Situ Hybridization, Fluorescence , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Mutation , Neoplasm Grading , Phenotype , Prognosis , Single-Cell Analysis , Young Adult
3.
N Engl J Med ; 365(15): 1384-95, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21995386

ABSTRACT

BACKGROUND: Myelodysplastic syndromes are a diverse and common group of chronic hematologic cancers. The identification of new genetic lesions could facilitate new diagnostic and therapeutic strategies. METHODS: We used massively parallel sequencing technology to identify somatically acquired point mutations across all protein-coding exons in the genome in 9 patients with low-grade myelodysplasia. Targeted resequencing of the gene encoding RNA splicing factor 3B, subunit 1 (SF3B1), was also performed in a cohort of 2087 patients with myeloid or other cancers. RESULTS: We identified 64 point mutations in the 9 patients. Recurrent somatically acquired mutations were identified in SF3B1. Follow-up revealed SF3B1 mutations in 72 of 354 patients (20%) with myelodysplastic syndromes, with particularly high frequency among patients whose disease was characterized by ring sideroblasts (53 of 82 [65%]). The gene was also mutated in 1 to 5% of patients with a variety of other tumor types. The observed mutations were less deleterious than was expected on the basis of chance, suggesting that the mutated protein retains structural integrity with altered function. SF3B1 mutations were associated with down-regulation of key gene networks, including core mitochondrial pathways. Clinically, patients with SF3B1 mutations had fewer cytopenias and longer event-free survival than patients without SF3B1 mutations. CONCLUSIONS: Mutations in SF3B1 implicate abnormalities of messenger RNA splicing in the pathogenesis of myelodysplastic syndromes. (Funded by the Wellcome Trust and others.).


Subject(s)
Myelodysplastic Syndromes/genetics , Phosphoproteins/genetics , Point Mutation , Ribonucleoprotein, U2 Small Nuclear/genetics , Erythrocytes/pathology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Phenotype , RNA Splicing Factors
4.
J Clin Pathol ; 64(11): 1010-3, 2011 11.
Article in English | MEDLINE | ID: mdl-21821860

ABSTRACT

AIMS: The purpose of this study was to compare the DNA-methylation signature in classic chronic Philadelphia negative myeloproliferative neoplasms (MPN), polycythaemia vera (PV) and essential thrombocythaemia (ET), in order to obtain a global insight into DNA-methylation changes associated with these malignancies. METHODS: Thirty-five MPN samples from 11 ET JAK2 V617F, 12 ET JAK2 wild type (WT) and 12 PV JAK2 V617F patients as well as 12 from healthy donors were analysed. DNA samples extracted from whole peripheral blood were hybridised to the 'HumanMethylation27 DNA Analysis BeadChip.' RESULTS: All groups showed a very homogeneous methylation pattern. Only the ZNF577 gene showed a differential methylation profile between PV JAK2 V617F positive and controls. This aberrant methylation was correlated with a differential gene expression of ZNF577. No aberrant hypermethylation was found in the SOCS-1 and SOCS-3 genes. CONCLUSIONS: According to our results, an aberrant methylation pattern does not seem to play a crucial role in MPN pathogenesis; nor does it justify phenotypical differences between PV and ET.


Subject(s)
DNA Methylation/genetics , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics , Polycythemia Vera/genetics , Thrombocythemia, Essential/genetics , Adult , Aged , DNA, Neoplasm/genetics , DNA-Binding Proteins/genetics , Epigenomics , Female , Humans , Male , Microarray Analysis , Middle Aged , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...