Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
2.
Hum Vaccin Immunother ; 20(1): 2378537, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39037011

ABSTRACT

Meningococcal (Neisseria meningitidis) serogroup B (MenB) strain antigens are diverse and a limited number of strains can be evaluated using the human serum bactericidal antibody (hSBA) assay. The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict the likelihood of coverage for large numbers of isolates by the 4CMenB vaccine, which includes antigens Neisseria adhesin A (NadA), Neisserial Heparin-Binding Antigen (NHBA), factor H-binding protein (fHbp), and Porin A (PorA). In this study, we characterized by whole-genome analyses 284 invasive MenB isolates collected from 2010 to 2014 by the Argentinian National Laboratories Network (52-61 isolates per year). Strain coverage was estimated by gMATS on all isolates and by hSBA assay on 74 randomly selected isolates, representative of the whole panel. The four most common clonal complexes (CCs), accounting for 81.3% of isolates, were CC-865 (75 isolates, 26.4%), CC-32 (59, 20.8%), CC-35 (59, 20.8%), and CC-41/44 (38, 13.4%). Vaccine antigen genotyping showed diversity. The most prevalent variants/peptides were fHbp variant 2, NHBA peptides 24, 21, and 2, and PorA variable region 2 profiles 16-36 and 14. The nadA gene was present in 66 (23.2%) isolates. Estimated strain coverage by hSBA assay showed 78.4% of isolates were killed by pooled adolescent sera, and 51.4% and 64.9% (based on two different thresholds) were killed by pooled infant sera. Estimated coverage by gMATS (61.3%; prediction interval: 55.5%, 66.7%) was consistent with the infant hSBA assay results. Continued genomic surveillance is needed to evaluate the persistence of major MenB CCs in Argentina.


The most common clinical manifestations of invasive meningococcal disease include meningitis and septicemia, which can be deadly, and many survivors suffer long-term serious after-effects. Most cases of invasive meningococcal disease are caused by six meningococcal serogroups (types), including serogroup B. Although vaccines are available against meningococcal serogroup B infection, these vaccines target antigens that are highly diverse. Consequently, the effectiveness of vaccination may vary from country to country because the meningococcal serogroup B strains circulating in particular regions carry different forms of the target vaccine antigens. This means it is important to test serogroup B strains isolated from specific populations to estimate the percentage of strains that a vaccine is likely to be effective against (known as 'vaccine strain coverage'). The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict strain coverage by the four-component meningococcal serogroup B vaccine, 4CMenB, against large numbers of serogroup B strains. In this study, we analyzed 284 invasive meningococcal serogroup B isolates collected between 2010 and 2014 in Argentina. Genetic analyses showed that the vaccine antigens of the isolates were diverse and some genetic characteristics had not been found in isolates from other countries. However, vaccine strain coverage estimated by gMATS was consistent with that reported in other parts of the world and with strain coverage results obtained for a subset via another method, the human serum bactericidal antibody (hSBA) assay. These results highlight the need for continued monitoring of circulating bacterial strains to assess the estimated strain coverage of meningococcal serogroup B vaccines.


Subject(s)
Antigens, Bacterial , Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Humans , Argentina/epidemiology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Meningococcal Infections/epidemiology , Infant , Adolescent , Child , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Child, Preschool , Young Adult , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/isolation & purification , Neisseria meningitidis, Serogroup B/immunology , Adult , Female , Male , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Genotype , Adhesins, Bacterial/genetics , Adhesins, Bacterial/immunology , Middle Aged , Porins/genetics , Porins/immunology , Serum Bactericidal Antibody Assay , Aged , Neisseria meningitidis/genetics , Neisseria meningitidis/immunology , Neisseria meningitidis/isolation & purification , Neisseria meningitidis/classification
3.
4.
mBio ; : e0110724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041817

ABSTRACT

Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.

5.
Hum Vaccin Immunother ; 20(1): 2357924, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38976659

ABSTRACT

The 4-component meningococcal serogroup B (MenB) vaccine, 4CMenB, the first broadly protective, protein-based MenB vaccine to be licensed, is now registered in more than 50 countries worldwide. Real-world evidence (RWE) from the last decade confirms its effectiveness and impact, with infant immunization programs showing vaccine effectiveness of 71-95% against invasive MenB disease and cross-protection against non-B serogroups, including a 69% decrease in serogroup W cases in 4CMenB-eligible cohorts in England. RWE from different countries also demonstrates the potential for additional moderate protection against gonorrhea in adolescents. The real-world safety profile of 4CMenB is consistent with prelicensure reports. Use of the endogenous complement human serum bactericidal antibody (enc-hSBA) assay against 110 MenB strains may enable assessment of the immunological effectiveness of multicomponent MenB vaccines in clinical trial settings. Equitable access to 4CMenB vaccination is required to better protect all age groups, including older adults, and vulnerable groups through comprehensive immunization policies.


Invasive meningococcal disease, caused by the bacterium Neisseria meningitidis(meningococcus), is rare but often devastating and can be deadly. Effective vaccines are available, including vaccines against meningococcal serogroup B disease. In 2013, the 4-component meningococcal serogroup B vaccine, 4CMenB, became the first broadly protective, protein-based vaccine against serogroup B to be licensed, with the second (bivalent vaccine, MenB-FHbp) licensed the following year. 4CMenB is now registered in more than 50 countries, in the majority, for infants and all age groups. In the US, it is approved for individuals aged 10­25 years. Evidence from immunization programs in the last decade, comparing vaccinated and unvaccinated individuals and the same population before and after vaccination, confirms the effectiveness and positive impact of 4CMenB against serogroup B disease. This also demonstrates that 4CMenB can provide protection against invasive diseases caused by other meningococcal serogroups. Furthermore, N. meningitidis is closely related to the bacterium that causes gonorrhea, N. gonorrhoeae, and emerging real-world evidence suggests that 4CMenB provides additional moderate protection against gonococcal disease. The safety of 4CMenB when given to large numbers of infants, children, adolescents, and adults is consistent with the 4CMenB safety profile reported before licensure.For the future, it would be beneficial to address differences among national guidelines for the recommended administration of 4CMenB, particularly where there is supportive epidemiological evidence but no equitable access to vaccination. New assays for assessing the potential effectiveness of meningococcal serogroup B vaccines in clinical trials are also required because serogroup B strains circulating in the population are extremely diverse across different countries.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Humans , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Meningococcal Infections/epidemiology , Neisseria meningitidis, Serogroup B/immunology , Immunization Programs , Gonorrhea/prevention & control , Gonorrhea/immunology , Vaccination , Infant , Adolescent , Cross Protection/immunology
6.
Nat Med ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013430

ABSTRACT

The emergence of highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b viruses and their transmission to dairy cattle and animals, including humans, poses a major global public health threat. Therefore, the development of effective vaccines and therapeutics against H5N1 clade 2.3.4.4b virus is considered a public health priority. In the United States, three H5N1 vaccines derived from earlier strains of HPAI H5N1 (A/Vietnam, clade 1, and A/Indonesia, clade 2.1) virus, with (MF59 or AS03) or without adjuvants, are licensed and stockpiled for pre-pandemic preparedness, but whether they can elicit neutralizing antibodies against circulating H5N1 clade 2.3.4.4b viruses is unknown. In this study, we evaluated the binding, hemagglutination inhibition and neutralizing antibody response generated after vaccination of adults with the three licensed vaccines. Individuals vaccinated with the two adjuvanted licensed H5N1 vaccines generated cross-reactive binding and cross-neutralizing antibodies against the HPAI clade 2.3.4.4b A/Astrakhan/3212/2020 virus. Seroconversion rates of 60-95% against H5 clade 2.3.4.4b were observed after two doses of AS03-adjuvanted-A/Indonesia or three doses of MF59-adjuvanted-A/Vietnam vaccine. These findings suggest that the stockpiled US-licensed adjuvanted H5N1 vaccines generate cross-neutralizing antibodies against circulating HPAI H5N1 clade 2.3.4.4b in humans and may be useful as bridging vaccines until updated H5N1 vaccines become available.

7.
J Infect Dis ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853614

ABSTRACT

BACKGROUND: We report data from Stage 1 of an ongoing two-staged, phase I/II randomized clinical trial (NCT05073003) with a 4-component Generalized Modules for Membrane Antigens-based vaccine against Shigella sonnei and S. flexneri 1b, 2a and 3a (altSonflex1-2-3, GSK). METHODS: 18-50-year-old Europeans (N=102) were randomized (2:1) to receive two injections of altSonflex1-2-3 or placebo at 3- or 6-month interval. Safety and immunogenicity were assessed at pre-specified timepoints. RESULTS: The most common solicited administration-site event (until 7 days post-each injection) and unsolicited adverse event (until 28 days post-each injection) were pain (altSonflex1-2-3: 97.1%; Placebo: 58.8%) and headache (32.4%; 23.5%), respectively. All serotype-specific functional IgG antibodies peaked 14-28 days post-injection 1 and remained substantially higher than pre-vaccination at 3 or 6 months post-vaccination; the second injection did not boost but restored the initial immune response. The highest seroresponse rates (≥4-fold increase in titers over baseline) were obtained against S. flexneri 2a (ELISA: post-injection 1: 91.0%; post-injection 2 [Day {D}113; D197]: 100%; 97.0%; serum bactericidal activity (SBA): post-injection 1: 94.4%; post-injection 2: 85.7%; 88.9%) followed by S. sonnei (ELISA: post-injection 1: 77.6%; post-injection 2: 84.6%; 78.8%; SBA: post-injection 1: 83.3%; post-injection 2: 71.4%; 88.9%). Immune responses against S. flexneri 1b and S. flexneri 3a, as measured by both ELISA and SBA, were numerically lower compared to those against S. sonnei and S. flexneri 2a. CONCLUSIONS: No safety signals or concerns were identified. altSonflex1-2-3 induced functional serotype-specific immune responses, allowing further clinical development in the target population.


What is the context? Shigella bacteria cause severe and often bloody diarrhea, called shigellosis, that affects mostly young children and can be life-threatening. Shigellosis is particularly common in low- and middle-income countries due to inadequate sanitation and limited access to healthcare. Since the immune response to Shigella is serotype-specific, an ideal vaccine should include multiple Shigella serotypes to ensure broad protection. What is new? We developed a novel vaccine against Shigella that includes Shigella sonnei and three prevalent Shigella flexneri serotypes. In Stage 1 (phase I) of the study, healthy European adults received two vaccine injections given 3 or 6 months apart. We found that: The vaccine was well tolerated, and no safety signals or concerns were identified.Regardless of the interval between injections, specific antibodies were elicited against all four Shigella serotypes, with highest levels against Shigella flexneri 2a and Shigella sonnei.Functional antibody levels peaked after the first injection, remaining higher than the baseline up to 6 months. A second injection did not boost responses but restored functional antibody levels to those after the first injection. What is the impact? The vaccine can now be tested in Stage 2 (phase II) of the study in Africa, a region highly affected by shigellosis.

8.
Proc Natl Acad Sci U S A ; 121(26): e2321978121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885387

ABSTRACT

In response to the COVID-19 pandemic, governments directly funded vaccine research and development (R&D), quickly leading to multiple effective vaccines and resulting in enormous health and economic benefits to society. We develop a simple economic model showing this feat could potentially be repeated for other health challenges. Based on inputs from the economic and medical literatures, the model yields estimates of optimal R&D spending on treatments and vaccines for known diseases. Taking a global and societal perspective, we estimate the social benefits of such spending and a corresponding rate of return. Applications to Streptococcus A vaccines and Alzheimer's disease treatments demonstrate the potential of enhanced research and development funding to unlock massive global health and health-related benefits. We estimate that these benefits range from 2 to 60 trillion (2020 US$) and that the corresponding rates of return on R&D spending range from 12% to 23% per year for 30 y. We discuss the current shortfall in R&D spending and public policies that can move current funding closer to the optimal level.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/economics , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/economics , SARS-CoV-2 , Models, Economic , Biomedical Research/economics , Biomedical Research/trends , COVID-19 Vaccines/economics , Cost-Benefit Analysis
9.
Sci Transl Med ; 16(745): eadm9183, 2024 May.
Article in English | MEDLINE | ID: mdl-38691620

ABSTRACT

As the world's population grows older, vaccination is becoming a key strategy for promoting healthy aging. Despite scientific progress in adult vaccine development, obstacles such as immunosenescence and vaccine hesitancy remain. To unlock the potential of adult vaccines fully, we must enhance immunization programs, dispel misinformation, and invest in research that deepens our understanding of aging and immunity.


Subject(s)
Healthy Aging , Vaccination , Humans , Aging/immunology , Vaccines/immunology
10.
iScience ; 27(5): 109703, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706870

ABSTRACT

Monoclonal antibodies (mAb) targeting the SARS-CoV-2 Spike (S) glycoprotein have been exploited for the treatment of severe COVID-19. In this study, we evaluated the immune-regulatory features of two neutralizing anti-S mAbs (nAbs), named J08 and F05, with wild-type (WT) conformation or silenced Fc functions. In the presence of D614G SARS-CoV-2, WT nAbs enhance intracellular viral uptake in immune cells and amplify antiviral type I Interferon and inflammatory cytokine and chemokine production without viral replication, promoting the differentiation of CD16+ inflammatory monocytes and innate/adaptive PD-L1+ and PD-L1+CD80+ plasmacytoid Dendritic Cells. In spite of a reduced neutralizing property, WT J08 nAb still promotes the IL-6 production and differentiation of CD16+ monocytes once binding Omicron BA.1 variant. Fc-mediated regulation of antiviral and inflammatory responses, in the absence of viral replication, highlighted in this study, might positively tune immune response during SARS-CoV-2 infection and be exploited also in mAb-based therapeutic and prophylactic strategies against viral infections.

11.
Front Immunol ; 15: 1374293, 2024.
Article in English | MEDLINE | ID: mdl-38680489

ABSTRACT

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Subject(s)
Antibodies, Bacterial , Bacterial Adhesion , Dysentery, Bacillary , Humans , Bacterial Adhesion/immunology , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/diagnosis , Antibodies, Bacterial/immunology , Host-Pathogen Interactions/immunology , Shigella/immunology , Shigella/pathogenicity , Epithelial Cells/microbiology , Epithelial Cells/immunology , Shigella sonnei/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , HeLa Cells
12.
Vaccine ; 42(8): 1906-1909, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38365488

ABSTRACT

Vaccines developed for hepatitis B and human papilloma virus infections have been very successful in reducing the burden of cancer due to these infections. In the past decade, our understanding of the immunology of cancer has greatly improved and important progress has been made in the use of immunotherapy for several cancers. However, for the majority of cancers, an infectious etiology is either unknown or does not exist. Prostate cancer, for which no infectious etiology is known, is the most common cancer in men in the United States. Here we discuss the rationale for developing a preventive vaccine for prostate cancer, discuss a possible approach for further work in this area and a means of testing the effectiveness of a prostate cancer prevention vaccine in a clinical trial.


Subject(s)
Papillomavirus Infections , Prostatic Neoplasms , Vaccines , Male , Humans , United States , Prostatic Neoplasms/prevention & control , Papillomavirus Infections/complications , Papillomavirus Infections/prevention & control , Immunotherapy
13.
Sci Rep ; 14(1): 4807, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413727

ABSTRACT

Antimicrobial resistance (AMR) is nowadays a global health concern as bacterial pathogens are increasingly developing resistance to antibiotics. Monoclonal antibodies (mAbs) represent a powerful tool for addressing AMR thanks to their high specificity for pathogenic bacteria which allows sparing the microbiota, kill bacteria through complement deposition, enhance phagocytosis or inhibit bacterial adhesion to epithelial cells. Here we describe a visual opsono-phagocytosis assay which relies on confocal microscopy to measure the impact of mAbs on phagocytosis of the bacterium Neisseria gonorrhoeae by macrophages. With respect to traditional CFU-based assays, generated images can be automatically analysed by convolutional neural networks. Our results demonstrate that confocal microscopy and deep learning-based analysis allow screening for phagocytosis-promoting mAbs against N. gonorrhoeae, even when mAbs are not purified and are expressed at low concentration. Ultimately, the flexibility of the staining protocol and of the deep-learning approach make the assay suitable for other bacterial species and cell lines where mAb activity needs to be investigated.


Subject(s)
Deep Learning , Gonorrhea , Humans , Neisseria gonorrhoeae , Antibodies, Monoclonal , High-Throughput Screening Assays , Anti-Bacterial Agents/pharmacology , Phagocytosis
14.
Proc Natl Acad Sci U S A ; 121(3): e2314730121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38198525

ABSTRACT

A growing body of evidence shows that fragment crystallizable (Fc)-dependent antibody effector functions play an important role in protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To unravel the mechanisms that drive these responses, we analyzed the phagocytosis and complement deposition mediated by a panel of 482 human monoclonal antibodies (nAbs) neutralizing the original Wuhan virus, expressed as recombinant IgG1. Our study confirmed that nAbs no longer neutralizing SARS-CoV-2 Omicron variants can retain their Fc functions. Surprisingly, we found that nAbs with the most potent Fc function recognize the N-terminal domain, followed by those targeting class 3 epitopes in the receptor binding domain. Interestingly, nAbs direct against the class 1/2 epitopes in the receptor binding motif, which are the most potent in neutralizing the virus, were the weakest in Fc functions. The divergent properties of the neutralizing and Fc function-mediating antibodies were confirmed by the use of different B cell germlines and by the observation that Fc functions of polyclonal sera differ from the profile observed with nAbs, suggesting that non-neutralizing antibodies also contribute to Fc functions. These data provide a high-resolution picture of the Fc-antibody response to SARS-CoV-2 and suggest that the Fc contribution should be considered for the design of improved vaccines, the selection of therapeutic antibodies, and the evaluation of correlates of protection.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2 , Epitopes
15.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293237

ABSTRACT

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

16.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140177

ABSTRACT

Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.

17.
Immunohorizons ; 7(10): 635-651, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37819998

ABSTRACT

Spike-encoding mRNA vaccines in early 2021 effectively reduced SARS-CoV-2-associated morbidity and mortality. New booster regimens were introduced due to successive waves of distinct viral variants. Therefore, people now have a diverse immune memory resulting from multiple SARS-CoV-2 Ag exposures, from infection to following vaccination. This level of community-wide immunity can induce immunological protection from SARS-CoV-2; however, questions about the trajectory of the adaptive immune responses and long-term immunity with respect to priming and repeated Ag exposure remain poorly explored. In this study, we examined the trajectory of adaptive immune responses following three doses of monovalent Pfizer BNT162b2 mRNA vaccination in immunologically naive and SARS-CoV-2 preimmune individuals without the occurrence of breakthrough infection. The IgG, B cell, and T cell Spike-specific responses were assessed in human blood samples collected at six time points between a moment before vaccination and up to 6 mo after the third immunization. Overall, the impact of repeated Spike exposures had a lower improvement on T cell frequency and longevity compared with IgG responses. Natural infection shaped the responses following the initial vaccination by significantly increasing neutralizing Abs and specific CD4+ T cell subsets (circulating T follicular helper, effector memory, and Th1-producing cells), but it had a small benefit at long-term immunity. At the end of the three-dose vaccination regimen, both SARS-CoV-2-naive and preimmune individuals had similar immune memory quality and quantity. This study provides insights into the durability of mRNA vaccine-induced immunological memory and the effects of preimmunity on long-term responses.


Subject(s)
BNT162 Vaccine , COVID-19 , mRNA Vaccines , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Immunoglobulin G/immunology , mRNA Vaccines/immunology , SARS-CoV-2 , Vaccines, Synthetic/immunology , Immunogenicity, Vaccine/immunology , Vaccine Efficacy , Immunization, Secondary , Lymphocyte Subsets/immunology
18.
NPJ Vaccines ; 8(1): 130, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670042

ABSTRACT

Shigellosis is a leading cause of diarrheal disease in low-middle-income countries (LMICs). Effective vaccines will help to reduce the disease burden, exacerbated by increasing antibiotic resistance, in the most susceptible population represented by young children. A challenge for a broadly protective vaccine against shigellosis is to cover the most epidemiologically relevant serotypes among >50 Shigella serotypes circulating worldwide. The GMMA platform has been proposed as an innovative delivery system for Shigella O-antigens, and we have developed a 4-component vaccine against S. sonnei, S. flexneri 1b, 2a and 3a identified among the most prevalent Shigella serotypes in LMICs. Driven by the immunogenicity results obtained in clinic with a first-generation mono-component vaccine, a new S. sonnei GMMA construct was generated and combined with three S. flexneri GMMA in a 4-component Alhydrogel formulation (altSonflex1-2-3). This formulation was highly immunogenic, with no evidence of negative antigenic interference in mice and rabbits. The vaccine induced bactericidal antibodies also against heterologous Shigella strains carrying O-antigens different from those included in the vaccine. The Monocyte Activation Test used to evaluate the potential reactogenicity of the vaccine formulation revealed no differences compared to the S. sonnei mono-component vaccine, shown to be safe in several clinical trials in adults. A GLP toxicology study in rabbits confirmed that the vaccine was well tolerated. The preclinical study results support the clinical evaluation of altSonflex1-2-3 in healthy populations, and a phase 1-2 clinical trial is currently ongoing.

19.
Front Microbiol ; 14: 1243427, 2023.
Article in English | MEDLINE | ID: mdl-37655342

ABSTRACT

Neisseria gonorrhoeae (gonococcus) is an obligate human pathogen and the etiological agent of the sexually transmitted disease gonorrhea. The rapid rise in gonococcal resistance to all currently available antimicrobials has become a significant public health burden and the need to develop novel therapeutic and prophylactic tools is now a global priority. While high-throughput screening methods allowed rapid discovery of extremely potent monoclonal antibodies (mAbs) against viral pathogens, the field of bacteriology suffers from the lack of assays that allow efficient screening of large panels of samples. To address this point, we developed luminescence-based (L-ABA) and resazurin-based (R-ABA) antibody bactericidal assays that measure N. gonorrhoeae metabolic activity as a proxy of bacterial viability. Both L-ABA and R-ABA are applicable on the large scale for the rapid identification of bactericidal antibodies and were validated by conventional methods. Implementation of these approaches will be instrumental to the development of new medications and vaccines against N. gonorrhoeae and other bacterial pathogens to support the fight against antimicrobial resistance.

20.
NPJ Vaccines ; 8(1): 100, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443176

ABSTRACT

The pediatric population receives the majority of vaccines globally, yet there is a paucity of studies on the transcriptional response induced by immunization in this special population. In this study, we performed a systems-level analysis of immune responses to the trivalent inactivated influenza vaccine adjuvanted with MF-59 in children (15-24 months old) and in young, healthy adults. We analyzed transcriptional responses elicited by vaccination in peripheral blood, as well as cellular and antibody responses following primary and booster vaccinations. Our analysis revealed that primary vaccination induced a persistent transcriptional signature of innate immunity; booster vaccination induced a transcriptional signature of an enhanced memory-like innate response, which was consistent with enhanced activation of myeloid cells assessed by flow cytometry. Furthermore, we identified a transcriptional signature of type 1 interferon response post-booster vaccination and at baseline that was correlated with the local reactogenicity to vaccination and defined an early signature that correlated with the hemagglutinin antibody titers. These results highlight an adaptive behavior of the innate immune system in evoking a memory-like response to secondary vaccination and define molecular correlates of reactogenicity and immunogenicity in infants.

SELECTION OF CITATIONS
SEARCH DETAIL