Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36771555

ABSTRACT

Traditional rice (Oryza sativa L.) management (tillage and flooding) is unsustainable due to soil degradation and the large amount of irrigation water used, an issue which is exacerbated in the Mediterranean region. Therefore, there is a need to explore rice management strategies in order to improve water-use efficiency and ensure its sustainability. Thus, field experiments were conducted to determine the medium-term effects of different irrigation and tillage methods combined with a single compost application on water and rice productivity, as well as food safety in a semiarid Mediterranean region. The management systems evaluated were: sprinkler irrigation in combination with no-tillage (SNT), sprinkler irrigation in combination with conventional tillage (ST), which were implemented in 2015, and flooding irrigation in combination with conventional tillage (FT), and their homologues (SNT-C, ST-C, and FT-C) with single compost application in 2015. In reference to rice grain yield, the highest values were observed under ST treatment with 10 307 and 11 625 kg ha-1 in 2018 and 2019 respectively; whereas between FT and SNT there were no significant differences, with 8 140 kg ha-1 as mean value through the study. Nevertheless, sprinkler irrigation allowed saving 55% of the total amount of water applied in reference to flooding irrigation. Furthermore, the highest arsenic concentration in grains was found under FT but it decreased with compost application (FT-C) and especially with sprinkler irrigation, regardless of tillage management systems. However, sprinkler irrigation favors the cadmium uptake by plants, although this process was reduced under SNT in reference to ST, and especially under amended compost treatments. Therefore, our results suggested that a combination of sprinkler irrigation and compost application, regardless of the tillage system, could be an excellent strategy for rice management for the Mediterranean environment in terms of water and crop productivity as well as food safety.

2.
J Environ Manage ; 334: 117430, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801681

ABSTRACT

Imazamox (IMZX) is a persistent herbicide having probable risks for non-target organisms in the environment and water contamination. Alternatives to conventional flooding rice production, including biochar amendment, may induce changes in soil properties which can greatly modify the environmental fate of IMZX. This two-year study is the first to evaluate how tillage and irrigation practices, with or without fresh or aged biochar (Bc), that are alternatives to conventional rice production impact IMZX's environmental fate. The treatments were: conventional tillage and flooding irrigation (CTFI), conventional tillage and sprinkler irrigation (CTSI), no-tillage and sprinkler irrigation (NTSI), and the corresponding Bc-amendment treatments (CTFI-Bc, CTSI-Bc, and NTSI-Bc). Fresh and aged Bc amendment decreased IMZX's sorption onto the soil in tillage treatments, with Kf values decreasing 3.7 and 4.2-fold (fresh case) and 1.5 and 2.6-fold (aged case) for CTSI-Bc and CTFI-Bc, respectively. The transition to sprinkler irrigation reduced IMZX persistence. Overall, Bc amendment also reduced chemical persistence with half-life values decreasing 1.6 and 1.5-fold for CTFI and CTSI (fresh year) and 1.1, 1.1, and 1.3-fold for CTFI, CTSI, and NTSI (aged year), respectively. Sprinkler irrigation reduced IMZX leaching by up to a factor of 2.2. The use of Bc as amendment led to a significant decrease in IMZX leaching only under tillage conditions, but notable in particular for the CTFI case where leaching losses were reduced in the fresh year from 80% to 34% and, in the aged year, from 74% to 50%. Hence the change in irrigation from flooding to sprinkler either alone or in combination with the use of Bc (fresh or aged) amendment could be considered an effective way to sharply mitigate IMZX contamination of water in environments where rice is grown, particularly in those managed with tillage.


Subject(s)
Oryza , Soil Pollutants , Soil/chemistry , Charcoal/chemistry , Water
3.
Plants (Basel) ; 11(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559566

ABSTRACT

Traditional rice (Oryza sativa L.) production by flooding is a source of greenhouse gases (GHG), especially methane. The high consumption of water, as well as the chemical and physical degradation caused by these traditional practices in rice soils, is promoting a decrease in rice production in the Mediterranean area. The aim of this study was to monitor GHG emissions and the net ecosystem carbon balance (NECB) from rice produced with sprinkler irrigation techniques and also assess the impact of olive mill waste compost (C-OW) application and tillage on GHG emissions and the NECB. A field experiment for irrigated rice production was implemented by considering four different treatments: (1) tillage (T); (2) no tillage-direct seeding techniques (DS); (3) application of C-OW followed by tillage (TC); and (4) application of C-OW followed by direct seeding (DSC). The C-OW was only applied in the first year at a dose of 80 Mg ha-1. GHG emissions were monitored over three years in these four treatments in order to estimate the direct (first year) and residual (third year) effects of such practices. The application of C-OW caused an increase of 1.85 times the emission of CO2-C in the TC-DSC compared to the T-DS in the first year. It is noteworthy that the TC treatment was the only one that maintained an emission of CO2-C that was 42% higher than T in the third year. Regardless of the treatments and year of the study, negative values for the cumulative CH4 were found, suggesting that under sprinkler irrigation, CH4 oxidation was the dominant process. A decrease in N2O emissions was observed under direct seeding relative to the tillage treatments, although without significant differences. Tillage resulted in an increase in the global warming potential (GWP) of up to 31% with respect to direct seeding management in the third year, as a consequence of the greater carbon oxidation caused by intensive tillage. DS presented a positive NECB in the accumulation of C in the soil; therefore, it provided a greater ecological benefit to the environment. Thus, under Mediterranean conditions, rice production through a sprinkler irrigation system in combination with direct seeding techniques may be a sustainable alternative for rice crops, reducing their GWP and resulting in a lower carbon footprint. However, the use of C-OW as an organic amendment could increase the GHG emissions from rice fields irrigated by sprinklers, especially under tillage conditions.

4.
Sci Total Environ ; 835: 155488, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35476948

ABSTRACT

Sprinkler irrigation has been successfully introduced in rice production as an alternative to the traditional flooding system, allowing water savings and the reduction of As accumulation in the grain. However, the same conditions can increase Cd mobility and grain accumulation, an effect that needs to be countered. A 3-year field experiment was set-up in a Mediterranean region (Extremadura, Spain), to evaluate how the application of compost from olive mill waste (single application, 80 t ha-1), influences the accumulation of As and Cd in the grain under different irrigation regimes. Accumulation of As in the grain was always lower in the sprinkler irrigation when compared with the flooding irrigation, reaching a 5-fold difference in the third year. Compost application did not evidence a clear effect on the As accumulation in the rice grain, but highly significant negative correlations (p < 0.001) were obtained between As content in the grain (total, inorganic, and organic) and the humification parameters in the soil, evidencing the importance of using a mature and stable organic amendment to avoid As accumulation in the grain. Cadmium accumulation in the rice grain decreased in each treatment where compost was applied, relatively to the non-treated counterpart (e.g., from 0.080 to <0.010 mg kg-1, in direct seeding with sprinkler irrigation, in the third year). There were no significant differences in the total inorganic As between treatments with or without compost application, but it was possible to observe an increase in the predominance of the organic As over the more toxic inorganic As, when compost was applied, allowing a decrease in the risk associated to As accumulation. Therefore, the aerobic cultivation of rice, with the simultaneous application of an adequate source of organic matter, can be considered a good solution to cope with the risk of accumulation of As and Cd in the rice grain.


Subject(s)
Arsenic , Composting , Olea , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Edible Grain/chemistry , Soil , Soil Pollutants/analysis
5.
Pest Manag Sci ; 73(6): 1067-1075, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28160393

ABSTRACT

Bentazon is a widely used herbicide in rice agroecosystems that has commonly been found in water resources. To assess how tillage and water regimes affect sorption/desorption, dissipation and leaching of bentazon in Mediterranean rice-growing conditions, field experiments were carried out using tillage and flooding (TF), tillage and sprinkler irrigation (TS), no-tillage and sprinkler irrigation (NTS) and long-term no-tillage and sprinkler irrigation (NTS7). After 3 years, the Kd values in TS were 2.3, 1.6 and 1.7 times lower than the values in NTS7, NTS and TF respectively. Greater sorption of bentazon was related to higher contents in total organic carbon and, although to a lesser extent, in humic acids and dissolved organic carbon. The persistence of bentazon was significantly greater under anaerobic (half-life DT50 = 94.1-135 days) than under aerobic (DT50 = 42.4-91.3 days) incubation conditions for all management regimes. Leaching losses of bentazon were reduced from 78 and 74% in TS and TF to 61 and 62% in NTS7 and NTS respectively. The mid- and long-term implementation of sprinkler irrigation in combination with no-tillage could be considered a management system that is effective at reducing water contamination by bentazon in Mediterranean rice-growing agroecosystems. © 2017 Society of Chemical Industry.


Subject(s)
Benzothiadiazines/chemistry , Crop Production/methods , Herbicides/chemistry , Oryza , Agricultural Irrigation , Water Pollutants, Chemical/chemistry , Water Pollution/prevention & control
6.
Sci Total Environ ; 541: 638-645, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26437341

ABSTRACT

The impact of de-oiled two-phase olive mill waste (DW) on the behavior of metribuzin in Mediterranean agricultural soils is evaluated, and the effects of the transformation of organic matter from this waste under field conditions are assessed. Four soils were selected and amended in the laboratory with DW at the rates of 2.5% and 5%. One of these soils was also amended in the field with 27 and 54 Mg ha(-1) of DW for 9 years. Significant increases in metribuzin sorption were observed in all the amended soils. In the laboratory, the 5% DW application rate increased the t1/2 values of metribuzin from 22.9, 35.8, 29.1, and 20.0 d for the original soils to 59.2, 51.1, 45.7, and 29.4d, respectively. This was attributable mainly to the inhibitory effect of the amendment on microbial activity. However, the addition of DW transformed naturally under field conditions decreased the persistence down to 3.93 d at the greater application rate. Both amendments (fresh and field-aged DW) significantly reduced the amount of metribuzin leached. This study showed that DW amendment may be an effective and sustainable management practice for controlling groundwater contamination by metribuzin.


Subject(s)
Herbicides/analysis , Industrial Waste/analysis , Olea , Triazines/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollution/prevention & control , Food Handling/methods
7.
J Environ Sci Health B ; 48(9): 767-75, 2013.
Article in English | MEDLINE | ID: mdl-23688227

ABSTRACT

Agricultural practices based on periodic inputs of organic amendments are strongly recommended for Mediterranean agro-ecosystems. Such amendments can change the soil's properties and transport characteristics, and hence affect the behaviour and fate of pesticides. S-metolachlor is an herbicide commonly used in intensive crops. The aim of this study was to investigate the influence of fresh oiled (OW) and de-oiled two-phase olive mill waste (DW) amendments on the sorption, leaching, and persistence of the herbicide S-metolachlor in a calcareous clay soil. The soil was amended in the laboratory with OW and DW at the rates of 2.5% and 5% (w/w). Significant increases in S-metolachlor sorption were observed in all amended soils. The addition of OW and DW increased the herbicide half-life from 27 d for the original soil to 41 and 47 d at the higher application rate of OW and DW, respectively. There was a significantly greater retention of the herbicide at the higher OW and DW loading rate. However, whereas the amount of S-metolachlor in the leachate was reduced by increasing the amount of OW, it was unaffected by increasing the amount of DW. The results lend support to the potential of OW and DW amendments as an effective management practice to increase S-metolachlor persistence in soils. This increase does not necessarily ensure decreased leaching of the herbicide but it could also increase the risk of surface water contamination at higher application rate.


Subject(s)
Acetamides/chemistry , Environmental Restoration and Remediation/methods , Herbicides/chemistry , Olea/chemistry , Soil Pollutants/chemistry , Adsorption , Soil/chemistry , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...