Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pept Res ; 65(6): 591-604, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15885118

ABSTRACT

Cognate interactions between immune effector cells and antigen-presenting cells (APCs) govern immune responses. Specific signals occur between the T-cell receptor peptide and APCs and nonspecific signals between pairs of costimulatory molecules. Costimulation signals are required for full T-cell activation and are assumed to regulate T-cell responses as well as other aspects of the immune system. As new discoveries are made, it is becoming clear how important these costimulation interactions are for immune responses. Costimulation requirements for T-cell regulation have been extensively studied as a way to control many autoimmune diseases and downregulate inflammatory reactions. The CD28:B7 and the CD40:CD40L families of molecules are considered to be critical costimulatory molecules and have been studied extensively. Blocking the interaction between these molecules results in a state of immune unresponsiveness termed 'anergy'. Several different strategies for blockade of these interactions are explored including monoclonal antibodies (mAbs), Fab fragments, chimeric, and/or fusion proteins. We developed novel, immune-specific approaches that interfere with these interactions. Using experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis mediated by central nervous system (CNS)-specific T-cells, we developed a multi-targeted approach that utilizes peptides for blockade of costimulatory molecules. We designed blocking peptide mimics that retain the functional binding area of the parent protein while reducing the overall size and are thus capable of blocking signal transduction. In this paper, we review the role of costimulatory molecules in autoimmune diseases, two of the most well-studied costimulatory pathways (CD28/CTLA-4:B7 and CD40:CD40L), and the advantages of peptidomimetic approaches. We present data showing the ability of peptide mimics of costimulatory molecules to suppress autoimmune disease and propose a mechanism for disease suppression.


Subject(s)
Antibodies, Blocking/therapeutic use , Autoimmune Diseases/therapy , Biomimetics , Lymphocyte Activation/immunology , Peptides/therapeutic use , Amino Acid Sequence , Animals , Autoimmune Diseases/immunology , Humans , Molecular Sequence Data , T-Lymphocytes/immunology
2.
J Pept Res ; 65(2): 189-99, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15705163

ABSTRACT

Cytotoxic T lymphocytes (CTL) are key players in the neutralization of viruses and killing of tumor cells. However, for generating an optimal CTL response by vaccination, the antigen has to be delivered directly into the cytoplasm for presentation by the conventional MHC class I pathway. To mimic the presentation of multiple epitopes by a tumor or virus infected cell, we have designed a multiepitope peptide vaccine incorporating thee CTL epitopes in tandem with double arginine spacers to facilitate efficient cleavage of the individual epitopes. To deliver the multiepitope peptide vaccine into the cytoplasm of mature dendritic cells for presentation by the MHC class I pathway we made use of an amphipathic peptide carrier. Direct injection of a non-covalent complex of the multiepitope peptide vaccine and amphipathic peptide carrier in an aqueous formulation into HLA-A*0201 (HHD) transgenic mice enhanced the cytotoxic T-cell responses by two to sixfold compared with multiepitope peptide vaccination alone. This novel antigen delivery strategy may find general application in the development of more effective vaccines for the treatment of cancer and infectious disease.


Subject(s)
Cancer Vaccines/administration & dosage , Epitopes/immunology , HLA-A Antigens/genetics , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigen Presentation , Cancer Vaccines/immunology , Dendritic Cells/immunology , Epitopes/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen , Humans , Mice , Mice, Transgenic , Receptor, ErbB-2/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL