Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters











Publication year range
1.
Postepy Biochem ; 70(1): 108-109, 2024 05 23.
Article in English | MEDLINE | ID: mdl-39016225

ABSTRACT

This essay is in memoriam of Ronald Hancock (1933 - 2022).


Subject(s)
Biochemistry , History, 20th Century , History, 21st Century , Biochemistry/history
2.
Postepy Biochem ; 70(1): 22-32, 2024 05 23.
Article in English | MEDLINE | ID: mdl-39016234

ABSTRACT

The review analyzes the role of physicochemical processes in the formation of the function-dependent architecture of the cell nucleus, built on the platform of a folded genome. The main attention is paid to various forms of the phase separation process, primarily the processes of liquid-liquid phase separation and polymer-polymer phase separation. The role of these processes in the formation of chromatin compartments and maintenance of three-dimensional genome architecture is discussed in detail. The relationship between genome activity and the creation of functional compartments in the cell nucleus is also analyzed.


Subject(s)
Cell Nucleus , Chromatin , Genome , Cell Nucleus/genetics , Cell Nucleus/metabolism , Humans , Chromatin/chemistry , Chromatin/metabolism , Animals
3.
Commun Biol ; 7(1): 783, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951619

ABSTRACT

Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.


Subject(s)
Chromatin , Drosophila Proteins , Interphase , Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Binding Sites , Cell Nucleus/metabolism , Chromatin/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics
4.
Nucleic Acids Res ; 52(11): 6234-6252, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38647066

ABSTRACT

Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neuronal cells. Specifically, polycomb group (PcG) proteins enable establishment and maintenance of neuronal cell type by reorganizing chromatin into repressive domains that limit the expression of fate-determining genes and sustain distinct gene expression patterns in neurons. Here, we map the 3D genome architecture in neuronal and non-neuronal cells isolated from the Wernicke's area of four human brains and comprehensively analyze neuron-specific aspects of chromatin organization. We find that genome segregation into active and inactive compartments is greatly reduced in neurons compared to other brain cells. Furthermore, neuronal Hi-C maps reveal strong long-range interactions, forming a specific network of PcG-mediated contacts in neurons that is nearly absent in other brain cells. These interacting loci contain developmental transcription factors with repressed expression in neurons and other mature brain cells. But only in neurons, they are rich in bivalent promoters occupied by H3K4me3 histone modification together with H3K27me3, which points to a possible functional role of PcG contacts in neurons. Importantly, other layers of chromatin organization also exhibit a distinct structure in neurons, characterized by an increase in short-range interactions and a decrease in long-range ones.


Subject(s)
Chromatin , Genome, Human , Polycomb-Group Proteins , Humans , Brain/metabolism , Brain/cytology , Chromatin/metabolism , Chromatin/genetics , Histones/metabolism , Histones/genetics , Neurons/metabolism , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Promoter Regions, Genetic
5.
Food Microbiol ; 121: 104520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637082

ABSTRACT

Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.


Subject(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genetics , Beer/microbiology , Bacteria/genetics , Plasmids , Saccharomyces/genetics , Metagenome , Metagenomics , Enterobacteriaceae/genetics
6.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003233

ABSTRACT

Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome. Here, we applied the high-throughput chromosome conformation capture technique (Hi-C) to study chromatin 3D structure in human chorion cells carrying either additional chromosome 13 (Patau syndrome) or chromosome 16 and in cultured fibroblasts with extra chromosome 18 (Edwards syndrome). The presence of extra chromosomes results in systematic changes of contact frequencies between small and large chromosomes. Analyzing the behavior of individual chromosomes, we found that a limited number of chromosomes change their contact patterns stochastically in trisomic cells and that it could be associated with lamina-associated domains (LAD) and gene content. For trisomy 13 and 18, but not for trisomy 16, the proportion of compacted loci on a chromosome is correlated with LAD content. We also found that regions of the genome that become more compact in trisomic cells are enriched in housekeeping genes, indicating a possible decrease in chromatin accessibility and transcription level of these genes. These results provide a framework for understanding the mechanisms of pan-genome transcription dysregulation in trisomies in the context of chromatin spatial organization.


Subject(s)
Cell Nucleus , Trisomy , Infant, Newborn , Humans , Trisomy/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Genetic Testing , Trisomy 13 Syndrome/genetics
7.
J Fungi (Basel) ; 9(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37888276

ABSTRACT

Ganoderma lucidum exhibits the ability to synthesize a diverse range of biologically active molecules with significant pharmaceutical potential, including xylomannan and fucogalactan, which have demonstrated antitumor activity. However, there exists considerable intra-species variability in the capacity to produce these metabolites at high concentrations, likely reflecting the high genomic diversity observed from a limited number of strains sequenced to date. We employed high-throughput shotgun sequencing to obtain the complete genome sequence of G. lucidum strain 5.1, which is distinguished by its remarkable xylomannan synthesis capabilities. Through the utilization of semi-automatic reordering based on conformation capture (Hi-C) data, we substantially enhanced the assembly process, resulting in the generation of 12 chromosome-level scaffolds with a cumulative length of 39 Mbp. By employing both de novo and homology-based approaches, we performed comprehensive annotation of the genome, thereby identifying a diverse repertoire of genes likely involved in polysaccharide biosynthesis. The genome sequence generated in this study serves as a valuable resource for elucidating the molecular mechanisms underlying the medicinal potential of Ganoderma species, discovering novel pharmaceutically valuable compounds, and elucidating the ecological mechanisms of the species. Furthermore, the chromosome contact map obtained for the first time for this species extends our understanding of 3D fungal genomics and provides insights into the functional and structural organization within the fungal kingdom.

8.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37503128

ABSTRACT

The first activation of gene expression during development (zygotic genome activation, ZGA) is accompanied by massive changes in chromosome organization. The connection between these two processes remains unknown. Using Hi-C for zebrafish embryos, we found that chromosome folding starts by establishing "fountains", novel elements of chromosome organization, emerging selectively at enhancers upon ZGA. Using polymer simulations, we demonstrate that fountains can emerge as sites of targeted cohesin loading and require two-sided, yet desynchronized, loop extrusion. Specific loss of fountains upon loss of pioneer transcription factors that drive ZGA reveals a causal connection between enhancer activity and fountain formation. Finally, we show that fountains emerge in early Medaka and Xenopus embryos; moreover, we found cohesin-dependent fountain pattern on enhancers of mouse embryonic stem cells. Taken together, fountains are the first enhancer-specific elements of chromosome organization; they constitute starting points of chromosome folding during early development, likely serving as sites of targeted cohesin loading.

9.
Genes (Basel) ; 14(6)2023 06 16.
Article in English | MEDLINE | ID: mdl-37372457

ABSTRACT

In this review, we consider various aspects of enhancer functioning in the context of the 3D genome. Particular attention is paid to the mechanisms of enhancer-promoter communication and the significance of the spatial juxtaposition of enhancers and promoters in 3D nuclear space. A model of an activator chromatin compartment is substantiated, which provides the possibility of transferring activating factors from an enhancer to a promoter without establishing direct contact between these elements. The mechanisms of selective activation of individual promoters or promoter classes by enhancers are also discussed.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Chromatin/genetics , Cell Nucleus , Promoter Regions, Genetic
10.
Commun Biol ; 6(1): 473, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120653

ABSTRACT

Proximity ligation approaches, which are widely used to study the spatial organization of the genome, also make it possible to reveal patterns of RNA-DNA interactions. Here, we use RedC, an RNA-DNA proximity ligation approach, to assess the distribution of major RNA types along the genomes of E. coli, B. subtilis, and thermophilic archaeon T. adornatum. We find that (i) messenger RNAs preferentially interact with their cognate genes and the genes located downstream in the same operon, which is consistent with polycistronic transcription; (ii) ribosomal RNAs preferentially interact with active protein-coding genes in both bacteria and archaea, indicating co-transcriptional translation; and (iii) 6S noncoding RNA, a negative regulator of bacterial transcription, is depleted from active genes in E. coli and B. subtilis. We conclude that the RedC data provide a rich resource for studying both transcription dynamics and the function of noncoding RNAs in microbial organisms.


Subject(s)
Escherichia coli , Gene Expression Regulation, Bacterial , Escherichia coli/genetics , DNA , Bacteria/genetics , Operon
11.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982676

ABSTRACT

Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.


Subject(s)
Epithelial Cells , Keratins , Keratins/genetics , Keratins/metabolism , Epithelium/metabolism , Epithelial Cells/metabolism , Cytoskeleton/metabolism , Gene Expression
12.
Mol Ther ; 31(4): 924-933, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36755493

ABSTRACT

The human genome is folded into a multi-level 3D structure that controls many nuclear functions including gene expression. Recently, alterations in 3D genome organization were associated with several genetic diseases and cancer. As a consequence, experimental approaches are now being developed to modify the global 3D genome organization and that of specific loci. Here, we discuss emerging experimental approaches of 3D genome editing that may prove useful in biomedicine.


Subject(s)
Gene Editing , Neoplasms , Humans , Genome, Human , Cell Nucleus , Neoplasms/genetics , Neoplasms/therapy , CRISPR-Cas Systems
13.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36759336

ABSTRACT

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step. Our novel approach, HiConfidence, eliminates biases from the Hi-C data by weighing chromatin contacts according to their consistency between replicates so that low-quality replicates do not substantially influence the result. The algorithm is effective for the analysis of global changes in chromatin structures such as compartments and topologically associating domains. We apply the HiConfidence approach to several Hi-C datasets with significant technical biases, that could not be analyzed effectively using existing methods, and obtain meaningful biological conclusions. In particular, HiConfidence aids in the study of how changes in histone acetylation pattern affect chromatin organization in Drosophila melanogaster S2 cells. The method is freely available at GitHub: https://github.com/victorykobets/HiConfidence.


Subject(s)
Drosophila melanogaster , Genome , Animals , Drosophila melanogaster/genetics , Chromatin/genetics , Chromosomes , Bias
14.
Biochemistry (Mosc) ; 87(9): 1035-1049, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36180994

ABSTRACT

The review is devoted to the patterns of evolution of α- and ß-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/ß-globin genes in Amniota occurred due to the performance by α-globins and ß-globins of non-canonical functions not related to oxygen transport.


Subject(s)
Evolution, Molecular , beta-Globins , Animals , Globins/genetics , Multigene Family , Oxygen , Phylogeny , Vertebrates/genetics , alpha-Globins/genetics , beta-Globins/genetics
15.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36142884

ABSTRACT

Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila , Acetyltransferases/genetics , Animals , Dosage Compensation, Genetic , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Male , Nuclear Proteins/genetics , X Chromosome/genetics
16.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077220

ABSTRACT

Topoisomerase inhibitors are widely used in cancer chemotherapy. However, one of the potential long-term adverse effects of such therapy is acute leukemia. A key feature of such therapy-induced acute myeloid leukemia (t-AML) is recurrent chromosomal translocations involving AML1 (RUNX1) or MLL (KMT2A) genes. The formation of chromosomal translocation depends on the spatial proximity of translocation partners and the mobility of the DNA ends. It is unclear which of these two factors might be decisive for recurrent t-AML translocations. Here, we used fluorescence in situ hybridization (FISH) and chromosome conformation capture followed by sequencing (4C-seq) to investigate double-strand DNA break formation and the mobility of broken ends upon etoposide treatment, as well as contacts between translocation partner genes. We detected the separation of the parts of the broken AML1 gene, as well as the increased mobility of these separated parts. 4C-seq analysis showed no evident contacts of AML1 and MLL with loci, implicated in recurrent t-AML translocations, either before or after etoposide treatment. We suggest that separation of the break ends and their increased non-targeted mobility-but not spatial predisposition of the rearrangement partners-plays a major role in the formation of these translocations.


Subject(s)
Leukemia, Myeloid, Acute , Translocation, Genetic , DNA , DNA Breaks, Double-Stranded , Etoposide/adverse effects , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/genetics , Topoisomerase II Inhibitors/adverse effects
17.
Biochemistry (Mosc) ; 87(7): 667-680, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36154886

ABSTRACT

The article reviews the development of ideas on the domain organization of eukaryotic genome, with special attention on the studies of DNA loops anchored to the nuclear matrix and their role in the emergence of the modern model of eukaryotic genome spatial organization. Critical analysis of results demonstrating that topologically associated chromatin domains are structural-functional blocks of the genome supports the notion that these blocks are fundamentally different from domains whose existence was proposed by the domain hypothesis of eukaryotic genome organization formulated in the 1980s. Based on the discussed evidence, it is concluded that the model postulating that eukaryotic genome is built from uniformly organized structural-functional blocks has proven to be untenable.


Subject(s)
Eukaryota , Nuclear Matrix , Chromatin/genetics , DNA/genetics , Eukaryota/genetics , Genome
18.
Biology (Basel) ; 11(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35625436

ABSTRACT

The cell nucleus is frequently considered a cage in which the genome is placed to protect it from various external factors. Inside the nucleus, many functional compartments have been identified that are directly or indirectly involved in implementing genomic DNA's genetic functions. For many years, it was assumed that these compartments are assembled on a proteinaceous scaffold (nuclear matrix), which provides a structural milieu for nuclear compartmentalization and genome folding while simultaneously offering some rigidity to the cell nucleus. The results of research in recent years have made it possible to consider the cell nucleus from a different angle. From the "box" in which the genome is placed, the nucleus has become a kind of mobile exoskeleton, which is formed around the packaged genome, under the influence of transcription and other processes directly related to the genome activity. In this review, we summarize the main arguments in favor of this point of view by analyzing the mechanisms that mediate cell nucleus assembly and support its resistance to mechanical stresses.

19.
Trends Biochem Sci ; 47(9): 736-744, 2022 09.
Article in English | MEDLINE | ID: mdl-35537914

ABSTRACT

A new era in 3D genome studies began with the development of the so-called 'C-methods', used for the analysis of spatial contacts between distant genomic elements. However, the idea that spatial genome organization, partitioning of the genome into structural/functional units, and the functional compartmentalization of the cell nucleus are important for the implementation of key functions of the genome arose much earlier. In this Opinion article, we briefly overview how the concept of spatial genome organization has changed over recent decades, discuss current views on the 3D genome and cell nucleus organization, and compare the experimental evidence for the inter-relation between gene regulation and the 3D genome.


Subject(s)
Chromatin , Genome , Cell Nucleus/genetics , Gene Expression Regulation
20.
BMC Bioinformatics ; 23(1): 116, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366792

ABSTRACT

BACKGROUND: Understanding the role of various factors in 3D genome organization is essential to determine their impact on shaping large-scale chromatin units such as euchromatin (A) and heterochromatin (B) compartments. At this level, chromatin compaction is extensively modulated when transcription and epigenetic profiles change upon cell differentiation and response to various external impacts. However, detailed analysis of chromatin contact patterns within and between compartments is complicated because of a lack of suitable computational methods. RESULTS: We developed a tool, Pentad, to perform calculation, visualisation and quantitative analysis of the average chromatin compartment from the Hi-C matrices in cis, trans, and specified genomic distances. As we demonstrated by applying Pentad to publicly available Hi-C datasets, it helps to reliably detect redistribution of contact frequency in the chromatin compartments and assess alterations in the compartment strength. CONCLUSIONS: Pentad is a simple tool for the analysis of changes in chromatin compartmentalization in various biological conditions. Pentad is freely available at https://github.com/magnitov/pentad .


Subject(s)
Chromatin , Chromosomes , Genome , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL