Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biodivers Data J ; 12: e119448, 2024.
Article in English | MEDLINE | ID: mdl-38883206

ABSTRACT

Our study aimed to develop an optimised laboratory protocol ensuring the preservation of morphological structures and extraction of high-quality DNA sequences from Psychodidae (Insecta, Diptera) specimens. With 310 analysed specimens, we investigated the impact of distinct laboratory treatments by employing two shaking categories (constant and interrupted) with five different incubation periods (16, 12, 8, 4 and 2 hours) during the DNA extraction process. Notably, 80.65% of the specimens exhibited morphological changes during DNA extraction. Our results indicated no statistical difference between constant and interrupted shaking for the total of morphological structures lost. However, within each shaking category, the loss of structures was influenced significantly by the incubation period. Prolonged incubation correlated with increased structural losses, whereas shorter incubation periods caused minor alterations in structures lost. In addition, our results showed a significant difference between constant and interrupted shaking treatments for DNA concentration. Likewise, the incubation period showed differences within each shaking category. Successful COI sequencing was achieved in 89.6% of specimens, with negligible differences in DNA fragment lengths across treatments. Our findings underscore the importance of an optimised protocol and its potential in systematic research involving nematoceran dipteran specimens by balancing morphological integrity and DNA extraction efficiency.

2.
Biodivers Data J ; 11: e101998, 2023.
Article in English | MEDLINE | ID: mdl-37206111

ABSTRACT

DNA barcodes are a great tool for accelerated species identification and for complementing species delimitation. Furthermore, DNA barcode reference libraries are the decisive backbone feature for any metabarcoding study in biodiversity monitoring, conservation or ecology. However, in some taxa, DNA barcodes cannot be generated with published primers at a satisfying success rate and these groups will consequently be largely missing from any barcoding-based species list. Here, we provide a custom DNA barcoding forward primer for the Eurytomidae (Hymenoptera, Chalcidoidea), elevating the success rate of high-quality DNA barcodes from 33% to 88%. Eurytomidae is a severely understudied, taxonomically challenging, species-rich group of primarily parasitoid wasps. High species numbers, diverse ecological roles and widespread and common presence identify Eurytomidae as one of many crucial families in terrestrial ecosystems. It is now possible to include Eurytomidae when studying and monitoring the terrestrial fauna, highlighting that barcoding-based approaches will need to routinely use different primers to avoid biases in their data and inferences. The new DNA barcoding protocol is also a prerequisite for our integrative taxonomy study of the group, aiming at delimiting and characterising Central European species and filling the GBOL (German Barcode Of Life) DNA barcode reference library with species-named and voucher-linked sequences.

SELECTION OF CITATIONS
SEARCH DETAIL