Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
ACS Appl Mater Interfaces ; 16(13): 16096-16105, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38502716

Tracking changes in the chemical state of transition metals in alkali-ion batteries is crucial to understanding the redox chemistry during operation. X-ray absorption spectroscopy (XAS) is often used to follow the chemistry through observed changes in the chemical state and local atomic structure as a function of the state-of-charge (SoC) in batteries. In this study, we utilize an operando X-ray emission spectroscopy (XES) method to observe changes in the chemical state of active elements in batteries during operation. Operando XES and XAS were compared by using a laboratory-scale setup for four different battery systems: LiCoO2 (LCO), Li[Ni1/3Co1/3Mn1/3]O2 (NMC111), Li[Ni0.8Co0.1Mn0.1]O2 (NMC811), and LiFePO4 (LFP) under a constant current charging the battery in 10 h (C/10 charge rate). We show that XES, despite narrower chemical shifts in comparison to XAS, allows us to fingerprint the battery SOC in real time. We further demonstrate that XES can be used to track the change in net spin of the probed atoms by analyzing changes in the emission peak shape. As a test case, the connection between net spin and the local chemical and structural environment was investigated by using XES and XAS in the case of electrochemically delithiated LCO in the range of 2-10% lithium removal.

2.
Toxicol Appl Pharmacol ; 426: 115642, 2021 09 01.
Article En | MEDLINE | ID: mdl-34242567

Disulfiram (DSF), a sulfur-containing compound, has been used to treat chronic alcoholism and cancer for decades by inactivating aldehyde dehydrogenase (ALDH). Hydrogen sulfide (H2S) is a new gasotransmitter and regulates various cellular functions by S-sulfhydrating cysteine in the target proteins. H2S exhibits similar properties to DSF in the sensitization of cancer cells. The interaction of DSF and H2S on ALDH activity and liver cancer cell survival are not clear. Here it was demonstrated that DSF facilitated H2S release from thiol-containing compounds, and DSF and H2S were both capable of regulating ALDH through inhibition of gene expression and enzymatic activity. The supplement of H2S sensitized human liver cancer cells (HepG2) to DSF-inhibited cell viability. The expression of cystathionine gamma-lyase (a major H2S-generating enzyme) was lower but ALDH was higher in mouse liver cancer stem cells (Dt81Hepa1-6) in comparison with their parental cells (Hepa1-6), and H2S was able to inhibit liver cancer stem cell adhesion. In conclusion, these data point to the potential of combining DSF and H2S for inhibition of cancer cell growth and tumor development by targeting ALDH.


Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Alcohol Deterrents/pharmacology , Aldehyde Dehydrogenase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Disulfiram/pharmacology , Hydrogen Sulfide/metabolism , Liver Neoplasms/drug therapy , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper/pharmacology , Humans , Hydrogen-Ion Concentration , Liver/drug effects , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Temperature
3.
Antioxidants (Basel) ; 10(1)2021 Jan 03.
Article En | MEDLINE | ID: mdl-33401622

The role of endogenous hydrogen sulfide (H2S) as an antioxidant regulator has sparked interest in its function within inflammatory diseases. Cigarette and alcohol use are major causes of premature death, resulting from chronic oxidative stress and subsequent tissue damage. The activation of the Nrf2 antioxidant response by H2S suggests that this novel gasotransmitter may function to prevent or potentially reverse disease progression caused by cigarette smoking or alcohol use. The purpose of this study is to review the interrelationship between H2S signaling and cigarette smoking or alcohol drinking. Based on the databases of cellular, animal, and clinical studies from Pubmed using the keywords of H2S, smoking, and/or alcohol, this review article provides a comprehensive insight into disrupted H2S signaling by alcohol drinking and cigarette smoking-caused disorders. Major signaling and metabolic pathways involved in H2S-derived antioxidant and anti-inflammatory responses are further reviewed. H2S supplementation may prove to be an invaluable asset in treating or preventing diseases in those suffering from cigarette or alcohol addiction.

4.
Antioxid Redox Signal ; 32(9): 583-601, 2020 03 20.
Article En | MEDLINE | ID: mdl-31870162

Aims: The physiological and pathological importance of hydrogen sulfide (H2S) as a novel gasotransmitter has been widely recognized. Cystathionine gamma-lyase (CSE) is one of the major H2S-producing enzymes and it regulates diverse functions in connection with intracellular calcium (Ca2+). The aim of this study is to examine the role of H2S in Golgi stress-related cell injury and skeletal muscle disorders. Results: Golgi stressors (brefeldin A [BFA] and monensin) decreased the expression of GM130 and ATP2C1 (two markers of Golgi stress response), induced Golgi apparatus fragmentation, and caused a higher level of oxidative stress and cell apoptosis in mouse myoblast cells. In addition, Golgi stressors upregulated CSE expression and endogenous H2S generation, and exogenously applied H2S was able to protect but inhibition of CSE/H2S system deteriorated Golgi stress response. Activating transcription factor 4 (ATF4) acted as an upstream molecule to increase CSE expression on Golgi stress response. Mechanically, Golgi stressors induced intracellular level of Ca2+, and chelating cellular Ca2+ markedly attenuated Golgi stress response, indicating the key role of Ca2+ in initiating Golgi stress and cell apoptosis. Further, administration of either angiotensin II or BFA initiated Golgi stress response and induced skeletal muscle atrophy in mice, which was further deteriorated by CSE deficiency but rescued by exogenously applied sodium hydrosulfide (NaHS). Innovation and Conclusion: The activation of the CSE/H2S pathway and the decrease of intracellular Ca2+ are two cellular protective mechanisms against Golgi stress, and the CSE/H2S system would be a target for preventing skeletal muscle dysfunctions.


Calcium/metabolism , Golgi Apparatus/metabolism , Homeostasis , Hydrogen Sulfide/metabolism , Animals , Apoptosis , Calcium/analysis , Cell Survival , Cells, Cultured , Hydrogen Sulfide/analysis , Male , Mice , Mice, Knockout , Oxidative Stress
...