Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Article En | MEDLINE | ID: mdl-36116006

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Huntington Disease , Mice , Humans , Animals , Huntington Disease/drug therapy , Models, Theoretical , Imidazoles/pharmacology , Glycosphingolipids , Disease Models, Animal , Huntingtin Protein/genetics
2.
Pharmacol Res ; 182: 106338, 2022 08.
Article En | MEDLINE | ID: mdl-35781057

The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.


Neuroblastoma , Parkinsonian Disorders , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Amidohydrolases , Animals , Disease Models, Animal , Dopamine , Dopaminergic Neurons/metabolism , Enzyme Inhibitors/pharmacology , Humans , Mice , Nerve Degeneration/drug therapy , Neuroblastoma/drug therapy , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy
3.
J Headache Pain ; 23(1): 79, 2022 Jul 07.
Article En | MEDLINE | ID: mdl-35799128

Targeting fatty acid amide hydrolase (FAAH) is a promising therapeutic strategy to combat certain forms of pain, including migraine headache. FAAH inhibitors, such as the O-biphenyl-3-yl carbamate URB597, have been shown to produce anti-hyperalgesic effects in animal models of migraine. The objective of this study was to investigate the behavioral and biochemical effects of compounds ARN14633 and ARN14280, two URB597 analogs with improved solubility and bioavailability, in a migraine-specific rat model in which trigeminal hyperalgesia is induced by nitroglycerin (NTG) administration. ARN14633 (1 mg/kg, i.p.) and ARN14280 (3 mg/kg, i.p.) were administered to adult male Sprague-Dawley rats 3 hours after NTG injection. One hour after the administration of either compound, rats were subjected to the orofacial formalin test. ARN14633 and ARN14280 attenuated NTG-induced nocifensive behavior and reduced transcription of genes encoding neuronal nitric oxide synthase, pain mediators peptides (calcitonin gene-related peptide, substance P) and pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and 6) in the trigeminal ganglion, cervical spinal cord and medulla. Finally, both compounds strongly elevated levels of endocannabinoids and/or other FAAH substrates in cervical spinal cord and medulla, and, to a lesser extent, in the trigeminal ganglia. The results indicate that the novel global FAAH inhibitors ARN14633 and ARN14280 elicit significant anti-hyperalgesic effects in a migraine-specific animal model and inhibit the associated peptidergic-inflammatory response. Although the precise mechanism underlying these effects remains to be elucidated, our results support further investigational studies of FAAH blockade as a potential therapeutic strategy to treat migraine conditions.


Endocannabinoids , Migraine Disorders , Amides/adverse effects , Amidohydrolases/genetics , Amidohydrolases/therapeutic use , Animals , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Inflammation/drug therapy , Male , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Nitroglycerin/pharmacology , Pain , Rats , Rats, Sprague-Dawley
4.
Pharmacol Res ; 172: 105816, 2021 10.
Article En | MEDLINE | ID: mdl-34391933

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression. To address this goal, we used ARN16186, a small molecule specifically designed and synthesized as a pharmacological tool to inhibit NAAA. We assessed whether enzyme inhibition affected the severity of neurological symptoms and modulated immune cell infiltration into the central nervous system of EAE mice. We found that preventive chronic treatment with ARN16186 was efficacious in slowing disease progression and preserving locomotor activity in EAE mice. Furthermore, NAAA inhibition reduced the number of immune cells infiltrating the spinal cord and modulated the overactivation of NF-kB and STAT3 transcription factors, leading to less expansion of Th17 cells over the course of the disease.


Amidohydrolases/antagonists & inhibitors , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , T-Lymphocytes/drug effects , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Locomotion/drug effects , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/metabolism , T-Lymphocytes/immunology
5.
Adv Pharmacol ; 90: 217-238, 2021.
Article En | MEDLINE | ID: mdl-33706934

N-acylphosphatidylethanolamines (NAPEs) are glycerophospholipid precursors for bioactive lipid amides and potential regulators of membrane function. They are hydrolyzed by NAPE-specific phospholipase D (NAPE-PLD) and have been implicated in neurodegenerative disorders such as Parkinson's disease. Here, we used siRNA-mediated silencing of NAPE-PLD in human SH-SY5Y cells and NAPE-PLD-/- mice to determine whether NAPEs influence the membrane association of LRRK2, a multifunctional protein kinase that is frequently mutated in persons with sporadic Parkinson's disease. NAPE-PLD deletion caused a significant accumulation of non-metabolized NAPEs, which was accompanied by a shift of LRRK2 from membrane to cytosol and a reduction in total LRRK2 content. Conversely, exposure of intact SH-SY5Y cells to bacterial PLD lowered NAPE levels and enhanced LRRK2 association with membranes. The results suggest that NAPE-PLD activity may contribute to the control of LRRK2 localization by regulating membrane NAPE levels.


Cell Membrane/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neurons/metabolism , Phospholipase D/metabolism , Animals , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , RAW 264.7 Cells
6.
Pain ; 162(9): 2376-2385, 2021 09 01.
Article En | MEDLINE | ID: mdl-33587406

ABSTRACT: Migraine pathophysiology has been suggested to include dysregulation of the endocannabinoid system (ES). We simultaneously evaluated plasma anandamide (AEA) and palmitoylethanolamide (PEA) levels and spinal sensitization in a validated human model of migraine based on systemic nitroglycerin (NTG) administration. Twenty-four subjects with episodic migraine (MIG) and 19 healthy controls (HC) underwent blood sampling and investigation of nociceptive withdrawal reflex thresholds (RTh: single-stimulus threshold; TST: temporal summation threshold) before and 30 (T30), 60 (T60), and 120 (T120) minutes after sublingual NTG administration (0.9 mg). At baseline, the MIG and HC groups were comparable for plasma AEA (P = 0.822) and PEA (P = 0.182) levels, and for RTh (P = 0.142) and TST values (P = 0.150). Anandamide levels increased after NTG administration (P = 0.022) in both groups, without differences between them (P = 0.779). By contrast, after NTG administration, PEA levels increased in the MIG group at T120 (P = 0.004), while remaining stable in the HC group. Nitroglycerin administration induced central sensitization in the MIG group, which was recorded as reductions in RTh (P = 0.046) at T30 and T120, and in TST (P = 0.001) at all time points. In the HC group, we observed increases in RTh (P = 0.001) and TST (P = 0.008), which suggest the occurrence of habituation. We found no significant correlations between the ES and neurophysiological parameters. Our findings suggest a role for PEA in the ictal phase of episodic migraine. The ES does not seem to be directly involved in the modulation of NTG-induced central sensitization, which suggests that the observed PEA increase and spinal sensitization are parallel, probably unrelated, phenomena.


Migraine Disorders , Nociception , Amides , Ethanolamines , Humans , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Nitroglycerin , Palmitic Acids
7.
J Med Chem ; 63(24): 15821-15851, 2020 12 24.
Article En | MEDLINE | ID: mdl-33290061

Acid ceramidase (AC) is a cysteine hydrolase that plays a crucial role in the metabolism of lysosomal ceramides, important members of the sphingolipid family, a diversified class of bioactive molecules that mediate many biological processes ranging from cell structural integrity, signaling, and cell proliferation to cell death. In the effort to expand the structural diversity of the existing collection of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides were designed and synthesized. Herein, we present the chemical optimization of our initial hits, 2-oxo-4-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 8a and 2-oxo-5-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 12a, which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo-N-pentyl-oxazole-3-carboxamide 32b as a potent AC inhibitor with optimal physicochemical and metabolic properties, showing target engagement in human neuroblastoma SH-SY5Y cells and a desirable pharmacokinetic profile in mice, following intravenous and oral administration. 32b enriches the arsenal of promising lead compounds that may therefore act as useful pharmacological tools for investigating the potential therapeutic effects of AC inhibition in relevant sphingolipid-mediated disorders.


Acid Ceramidase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Oxazolone/chemistry , Acid Ceramidase/metabolism , Administration, Oral , Animals , Binding Sites , Cell Line, Tumor , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Inhibitory Concentration 50 , Kinetics , Male , Mice , Mice, Inbred C57BL , Microsomes/metabolism , Molecular Docking Simulation , Oxazolone/metabolism , Oxazolone/pharmacokinetics , Solubility , Structure-Activity Relationship
8.
Pharmacol Res ; 160: 105064, 2020 10.
Article En | MEDLINE | ID: mdl-32634582

N-Acylethanolamine acid amidase (NAAA) deactivates the endogenous peroxisome proliferator-activated receptor-α (PPAR-α) agonist palmitoylethanolamide (PEA). NAAA-regulated PEA signaling participates in the control of peripheral inflammation, but evidence suggests also a role in the modulation of neuroinflammatory pathologies such as multiple sclerosis (MS). Here we show that disease progression in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS is accompanied by induction of NAAA expression in spinal cord, which in presymptomatic animals is confined to motor neurons and oligodendrocytes but, as EAE progresses, extends to microglia/macrophages and other cell types. As previously reported for NAAA inhibition, genetic NAAA deletion delayed disease onset and attenuated symptom intensity in female EAE mice, suggesting that accrued NAAA expression may contribute to pathology. To further delineate the role of NAAA in EAE, we generated a mouse line that selectively overexpresses the enzyme in macrophages, microglia and other monocyte-derived cells. Non-stimulated alveolar macrophages from these NaaaCD11b+ mice contain higher-than-normal levels of inducible nitric oxide synthase and display an activated morphology. Furthermore, intranasal lipopolysaccharide injections cause greater alveolar leukocyte accumulation in NaaaCD11b+ than in control mice. NaaaCD11b+ mice also display a more aggressive clinical response to EAE induction, compared to their wild-type littermates. The results identify NAAA as a critical control step in EAE pathogenesis, and point to this enzyme as a possible target for the treatment of MS.


Amidohydrolases/metabolism , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/enzymology , Multiple Sclerosis/pathology , Amidohydrolases/genetics , Animals , Disease Progression , Female , Lipopolysaccharides , Macrophages/enzymology , Male , Mice , Mice, Inbred C57BL , Microglia/enzymology , Motor Neurons/enzymology , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Oligodendroglia/metabolism , Spinal Cord/enzymology
9.
J Med Chem ; 63(7): 3634-3664, 2020 04 09.
Article En | MEDLINE | ID: mdl-32176488

Sphingolipids (SphLs) are a diverse class of molecules that are regulated by a complex network of enzymatic pathways. A disturbance in these pathways leads to lipid accumulation and initiation of several SphL-related disorders. Acid ceramidase is one of the key enzymes that regulate the metabolism of ceramides and glycosphingolipids, which are important members of the SphL family. Herein, we describe the lead optimization studies of benzoxazolone carboxamides resulting in piperidine 22m, where we demonstrated target engagement in two animal models of neuropathic lysosomal storage diseases (LSDs), Gaucher's and Krabbe's diseases. After daily intraperitoneal administration at 90 mg kg-1, 22m significantly reduced the brain levels of the toxic lipids glucosylsphingosine (GluSph) in 4L;C* mice and galactosylsphingosine (GalSph) in Twitcher mice. We believe that 22m is a lead molecule that can be further developed for the correction of severe neurological LSDs where GluSph or GalSph play a significant role in disease pathogenesis.


Acid Ceramidase/antagonists & inhibitors , Benzoxazoles/pharmacology , Enzyme Inhibitors/pharmacology , Administration, Oral , Animals , Benzoxazoles/administration & dosage , Benzoxazoles/chemical synthesis , Benzoxazoles/pharmacokinetics , Brain/metabolism , Cell Line, Tumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Gaucher Disease/enzymology , Gaucher Disease/metabolism , Humans , Leukodystrophy, Globoid Cell/enzymology , Leukodystrophy, Globoid Cell/metabolism , Male , Mice , Molecular Structure , Psychosine/analogs & derivatives , Psychosine/metabolism , Structure-Activity Relationship
10.
Sci Rep ; 9(1): 15927, 2019 11 04.
Article En | MEDLINE | ID: mdl-31685899

N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) catalyzes the cleavage of membrane NAPEs into bioactive fatty-acid ethanolamides (FAEs). Along with this precursor role, NAPEs might also serve autonomous signaling functions. Here, we report that injections of 6-hydroxydopamine (6-OHDA) into the mouse striatum cause a local increase in NAPE and FAE levels, which precedes neuronal cell death. NAPE, but not FAE, accumulation is enhanced in mice lacking NAPE-PLD, which display a substantial reduction in 6-OHDA-induced neurotoxicity, as shown by increased survival of substantia nigra dopamine neurons, integrity of striatal dopaminergic fibers, and striatal dopamine metabolite content. Reduced damage is accompanied by attenuation of the motor response evoked by apomorphine. Furthermore, NAPE-PLD silencing protects cathecolamine-producing SH-SY5Y cells from 6-OHDA-induced reactive oxygen species formation, caspase-3 activation and death. Mechanistic studies in mice suggest the existence of multiple molecular contributors to the neuroprotective effects of NAPE-PLD deletion, including suppression of Rac1 activity and attenuated transcription of several genes (Cadps, Casp9, Egln1, Kcnj6, Spen, and Uchl1) implicated in dopamine neuron survival and/or Parkinson's disease. The findings point to a previously unrecognized role for NAPE-PLD in the regulation of dopamine neuron function, which may be linked to the control of NAPE homeostasis in membranes.


Corpus Striatum/drug effects , Oxidopamine/pharmacology , Phospholipase D/metabolism , Animals , Apomorphine/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Corpus Striatum/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Phospholipase D/antagonists & inhibitors , Phospholipase D/genetics , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , rac1 GTP-Binding Protein/metabolism
11.
Int J Mol Sci ; 20(16)2019 Aug 17.
Article En | MEDLINE | ID: mdl-31426457

Previous studies have shown that the sphingolipid-derived mediator sphingosine-1-phosphate (S1P) reduces food intake by activating G protein-coupled S1P receptor-1 (S1PR1) in the hypothalamus. Here, we examined whether feeding regulates hypothalamic mobilization of S1P and other sphingolipid-derived messengers. We prepared lipid extracts from the hypothalamus of C57Bl6/J male mice subjected to one of four conditions: free feeding, 12 h fasting, and 1 h or 6 h refeeding. Liquid chromatography/tandem mass spectrometry was used to quantify various sphingolipid species, including sphinganine (SA), sphingosine (SO), and their bioactive derivatives SA-1-phosphate (SA1P) and S1P. In parallel experiments, transcription of S1PR1 (encoded in mice by the S1pr1 gene) and of key genes of sphingolipid metabolism (Sptlc2, Lass1, Sphk1, Sphk2) was measured by RT-PCR. Feeding increased levels of S1P (in pmol-mg-1 of wet tissue) and SA1P. This response was accompanied by parallel changes in SA and dihydroceramide (d18:0/18:0), and was partially (SA1P) or completely (S1P) reversed by fasting. No such effects were observed with other sphingolipid species targeted by our analysis. Feeding also increased transcription of Sptlc2, Lass1, Sphk2, and S1pr1. Feeding stimulates mobilization of endogenous S1PR1 agonists S1P and SA1P in mouse hypothalamus, via a mechanism that involves transcriptional up-regulation of de novo sphingolipid biosynthesis. The results support a role for sphingolipid-mediated signaling in the central control of energy balance.


Eating , Hypothalamus/metabolism , Lysophospholipids/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Animals , Gene Expression Regulation , Hypothalamus/physiology , Male , Mice , Mice, Inbred C57BL , Sphingolipids/metabolism , Sphingosine/metabolism
12.
Aging (Albany NY) ; 11(1): 73-88, 2019 01 08.
Article En | MEDLINE | ID: mdl-30620722

Circulating ceramide levels are abnormally elevated in age-dependent pathologies such as cardiovascular diseases, obesity and Alzheimer's disease. Nevertheless, the potential impact of age on plasma ceramide levels has not yet been systematically examined. In the present study, we quantified a focused panel of plasma ceramides and dihydroceramides in a cohort of 164 subjects (84 women) 19 to 80 years of age. After adjusting for potential confounders, multivariable linear regression analysis revealed a positive association between age and ceramide (d18:1/24:0) (ß (SE) = 5.67 (2.38); p = .0198) and ceramide (d18:1/24:1) (ß (SE) = 2.88 (.61); p < .0001) in women, and between age and ceramide (d18:1/24:1) in men (ß (SE) = 1.86 (.77); p = .0179). In women of all ages, but not men, plasma ceramide (d18:1/24:1) was negatively correlated with plasma estradiol (r = -0.294; p = .007). Finally, in vitro experiments in human cancer cells expressing estrogen receptors showed that incubation with estradiol (10 nM, 24 h) significantly decreased ceramide accumulation. Together, the results suggest that aging is associated with an increase in circulating ceramide levels, which in post-menopausal women is at least partially associated with lower estradiol levels.


Aging/blood , Ceramides/blood , Adult , Aged , Aging/physiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Postmenopause , Young Adult
13.
ACS Chem Neurosci ; 10(3): 1627-1635, 2019 03 20.
Article En | MEDLINE | ID: mdl-30481470

Alzheimer's disease (AD) is a slow-progressing disease of the brain characterized by symptoms such as impairment of memory and other cognitive functions. AD is associated with an inflammatory process that involves astrocytes and microglial cells, among other components. Astrocytes are the most abundant type of glial cells in the central nervous system (CNS). They are involved in inducing neuroinflammation. The present study uses astrocyte-neuron cocultures to investigate how ARN14494, a serine palmitoyltransferase (SPT) inhibitor, affects the CNS in terms of anti-inflammation and neuroprotection. SPT is the first rate-limiting enzyme in the de novo ceramide synthesis pathway. Consistent evidence suggests that ceramide is increased in AD brain patients. After ß-amyloid 1-42 injury in an in vitro model of AD, ARN14494 inhibits SPT activity and the synthesis of long-chain ceramides and dihydroceramides that are involved in AD progression. In mouse primary cortical astrocytes, ARN14494 prevents the synthesis of proinflammatory cytokines TNFα and IL1ß, growth factor TGFß1, and oxidative stress-related enzymes iNOS and COX2. ARN14494 also exerts neuroprotective properties in primary cortical neurons. ARN14494 decreases neuronal death and caspase-3 activation in neurons, when the neuroinflammation is attenuated in astrocytes. These findings suggest that ARN14494 protects neurons from ß-amyloid 1-42 induced neurotoxicity through a variety of mechanisms, including antioxidation, antiapoptosis, and anti-inflammation. SPT inhibition could therefore be a safe therapeutic strategy for ameliorating the pathology of Alzheimer's disease.


Amyloid beta-Peptides/pharmacology , Astrocytes/drug effects , Cell Survival/drug effects , Neurons/drug effects , Serine C-Palmitoyltransferase/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/metabolism , Brain/drug effects , Brain/metabolism , Cell Death/drug effects , Mice , Microglia/drug effects , Microglia/metabolism , Neurons/metabolism , Peptide Fragments/metabolism
15.
Sci Rep ; 7(1): 7411, 2017 08 07.
Article En | MEDLINE | ID: mdl-28785021

Acid ceramidase (AC) is a lysosomal cysteine hydrolase that catalyzes the conversion of ceramide into fatty acid and sphingosine. This reaction lowers intracellular ceramide levels and concomitantly generates sphingosine used for sphingosine-1-phosphate (S1P) production. Since increases in ceramide and consequent decreases of S1P reduce proliferation of various cancers, AC might offer a new target for anti-tumor therapy. Here we used CrispR-Cas9-mediated gene editing to delete the gene encoding for AC, ASAH1, in human A375 melanoma cells. ASAH1-null clones show significantly greater accumulation of long-chain saturated ceramides that are substrate for AC. As seen with administration of exogenous ceramide, AC ablation blocks cell cycle progression and accelerates senescence. Importantly, ASAH1-null cells also lose the ability to form cancer-initiating cells and to undergo self-renewal, which is suggestive of a key role for AC in maintaining malignancy and self-renewal of invasive melanoma cells. The results suggest that AC inhibitors might find therapeutic use as adjuvant therapy for advanced melanoma.


Acid Ceramidase/genetics , Cell Proliferation , Cellular Senescence , Ceramides/analysis , Gene Knockout Techniques , Melanocytes/enzymology , Melanocytes/metabolism , CRISPR-Associated Protein 9 , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Lysophospholipids/analysis , Sphingosine/analogs & derivatives , Sphingosine/analysis
16.
Angew Chem Int Ed Engl ; 55(37): 11193-11197, 2016 09 05.
Article En | MEDLINE | ID: mdl-27404798

Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders.


Amidohydrolases/antagonists & inhibitors , Disease Models, Animal , Endocannabinoids/pharmacology , Enzyme Inhibitors/pharmacology , Ethanolamines/pharmacology , Multiple Sclerosis/drug therapy , Oleic Acids/pharmacology , Palmitic Acids/pharmacology , Administration, Oral , Amides , Amidohydrolases/metabolism , Animals , Dose-Response Relationship, Drug , Endocannabinoids/administration & dosage , Endocannabinoids/chemistry , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Ethanolamines/administration & dosage , Ethanolamines/chemistry , Mice , Molecular Structure , Multiple Sclerosis/metabolism , Oleic Acids/administration & dosage , Oleic Acids/chemistry , Palmitic Acids/administration & dosage , Palmitic Acids/chemistry , Structure-Activity Relationship
17.
Data Brief ; 8: 387-93, 2016 Sep.
Article En | MEDLINE | ID: mdl-27331118

The NMR spectra and data reported in this article refer to the research article titled "A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR" [1]. We provide the (1)H q-NMR spectra of cell culture media (DMEM) after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill) sequence or applying post-processing filtering algorithms to remove, from the (1)H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment.

18.
Anal Biochem ; 501: 26-34, 2016 May 15.
Article En | MEDLINE | ID: mdl-26898303

Absolute analyte quantification by nuclear magnetic resonance (NMR) spectroscopy is rarely pursued in metabolomics, even though this would allow researchers to compare results obtained using different techniques. Here we report on a new protocol that permits, after pH-controlled serum protein removal, the sensitive quantification (limit of detection [LOD] = 5-25 µM) of hydrophilic nutrients and metabolites in the extracellular medium of cells in cultures. The method does not require the use of databases and uses PULCON (pulse length-based concentration determination) quantitative NMR to obtain results that are significantly more accurate and reproducible than those obtained by CPMG (Carr-Purcell-Meiboom-Gill) sequence or post-processing filtering approaches. Three practical applications of the method highlight its flexibility under different cell culture conditions. We identified and quantified (i) metabolic differences between genetically engineered human cell lines, (ii) alterations in cellular metabolism induced by differentiation of mouse myoblasts into myotubes, and (iii) metabolic changes caused by activation of neurotransmitter receptors in mouse myoblasts. Thus, the new protocol offers an easily implementable, efficient, and versatile tool for the investigation of cellular metabolism and signal transduction.


Magnetic Resonance Spectroscopy/methods , Metabolome , Metabolomics/methods , Animals , Blood Proteins/isolation & purification , Cell Culture Techniques/methods , Cell Differentiation , Cell Line , Extracellular Space/chemistry , Extracellular Space/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Mice , Myoblasts/chemistry , Myoblasts/cytology , Myoblasts/metabolism , Serum/chemistry
19.
J Biol Chem ; 291(5): 2422-34, 2016 Jan 29.
Article En | MEDLINE | ID: mdl-26553872

Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nM) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation.


Acid Ceramidase/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Skin Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Ceramides/chemistry , Down-Regulation , Enzyme Inhibitors/chemistry , Fibroblasts/metabolism , HCT116 Cells , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Keratinocytes/metabolism , Lipids/chemistry , Lysophospholipids/metabolism , MCF-7 Cells , Melanocytes/cytology , Melanocytes/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Oxidoreductases/metabolism , RNA, Small Interfering/metabolism , Serine C-Palmitoyltransferase/metabolism , Signal Transduction , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Uracil/analogs & derivatives , Uracil/chemistry
20.
J Med Chem ; 58(23): 9258-72, 2015 Dec 10.
Article En | MEDLINE | ID: mdl-26560855

Ceramides are lipid-derived intracellular messengers involved in the control of senescence, inflammation, and apoptosis. The cysteine amidase, acid ceramidase (AC), hydrolyzes these substances into sphingosine and fatty acid and, by doing so, regulates their signaling activity. AC inhibitors may be useful in the treatment of pathological conditions, such as cancer, in which ceramide levels are abnormally reduced. Here, we present a systematic SAR investigation of the benzoxazolone carboxamides, a recently described class of AC inhibitors that display high potency and systemic activity in mice. We examined a diverse series of substitutions on both benzoxazolone ring and carboxamide side chain. Several modifications enhanced potency and stability, and one key compound with a balanced activity-stability profile (14) was found to inhibit AC activity in mouse lungs and cerebral cortex after systemic administration. The results expand our arsenal of AC inhibitors, thereby facilitating the use of these compounds as pharmacological tools and their potential development as drug leads.


Acid Ceramidase/antagonists & inhibitors , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Acid Ceramidase/metabolism , Animals , Benzoxazoles/chemical synthesis , Brain/drug effects , Brain/enzymology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Humans , Lung/drug effects , Lung/enzymology , Male , Mice , Mice, Inbred C57BL , Structure-Activity Relationship
...