Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13271, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858407

ABSTRACT

Touch DNA, which can be found at crime scenes, consists of invisible biological traces deposited through a person's skin's contact with an object or another person. Many factors influence touch DNA transfer, including the "destination" substrate's surface. The latter's physicochemical characteristics (wettability, roughness, surface energy, etc.) will impact touch DNA deposition and persistence on a substrate. We selected a representative panel of substrates from objects found at crime scenes (glass, polystyrene, tiles, raw wood, etc.) to investigate the impact of these characteristics on touch DNA deposition and detection. These were shown to impact cell deposition, morphology, retention, and subsequent touch DNA genetic analysis. Interestingly, cell-derived fragments found within keratinocyte cells and fingermarks using in vitro touch DNA models could be successfully detected whichever the substrates' physicochemistry by targeting cellular proteins and carbohydrates for two months, indoors and outdoors. However, swabbing and genetic analyses of such mock traces from different substrates produced informative profiles mainly for substrates with the highest surface free energy and therefore the most hydrophilic. The substrates' intrinsic characteristics need to be considered to better understand both the transfer and persistence of biological traces, as well as their detection and collection, which require an appropriate methodology and sampling device to get informative genetic profiles.


Subject(s)
DNA , Touch , Humans , DNA/chemistry , Surface Properties , Skin/metabolism , Skin/chemistry , Keratinocytes/metabolism , DNA Fingerprinting/methods
2.
Sci Rep ; 13(1): 18105, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872292

ABSTRACT

At a crime scene, investigators are faced with a multitude of traces. Among them, biological traces are of primary interest for the rapid genetic-based identification of individuals. "Touch DNA" consists of invisible biological traces left by the simple contact of a person's skin with objects. To date, these traces remain undetectable with the current methods available in the field. This study proposes a proof-of-concept for the original detection of touch DNA by targeting cell-derived fragments in addition to DNA. More specifically, adhesive-structure proteins (laminin, keratin) as well as carbohydrate patterns (mannose, galactose) have been detected with keratinocyte cells derived from a skin and fingermark touch-DNA model over two months in outdoor conditions. Better still, this combinatory detection strategy is compatible with DNA profiling. This proof-of-concept work paves the way for the optimization of tools that can detect touch DNA, which remains a real challenge in helping investigators and the delivery of justice.


Subject(s)
Criminals , Humans , Skin , DNA Fingerprinting , Touch , DNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...