Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 55(32): 9185-9192, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27857306

ABSTRACT

Two-dimensional (2D) terahertz imaging and 3D visualization suffer from severe artifacts since an important part of the terahertz beam is reflected, diffracted, and refracted at each interface. These phenomena are due to refractive index mismatch and reflection in the case of non-orthogonal incidence. This paper proposes an experimental procedure that reduces these deleterious optical refraction effects for a cylinder and a prism made with polyethylene material. We inserted these samples in a low absorption liquid medium to match the sample index. We then replaced the surrounding air with a liquid with an optimized refractive index, with respect to the samples being studied. Using this approach we could more accurately recover the original sample shape by time-of-flight tomography.

2.
Appl Opt ; 55(13): 3462-7, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27140357

ABSTRACT

Additive manufacturing (AM) technology is not only used to make 3D objects but also for rapid prototyping. In industry and laboratories, quality controls for these objects are necessary though difficult to implement compared to classical methods of fabrication because the layer-by-layer printing allows for very complex object manufacturing that is unachievable with standard tools. Furthermore, AM can induce unknown or unexpected defects. Consequently, we demonstrate terahertz (THz) imaging as an innovative method for 2D inspection of polymer materials. Moreover, THz tomography may be considered as an alternative to x-ray tomography and cheaper 3D imaging for routine control. This paper proposes an experimental study of 3D polymer objects obtained by additive manufacturing techniques. This approach allows us to characterize defects and to control dimensions by volumetric measurements on 3D data reconstructed by tomography.

3.
Appl Opt ; 54(22): 6758-62, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26368091

ABSTRACT

In this paper, the impact of low-frequency noise on terahertz-computed tomography (THz-CT) is analyzed for several measurement configurations and pyroelectric detectors. We acquire real noise data from a continuous millimeter-wave tomographic scanner in order to figure out its impact on reconstructed images. Second, noise characteristics are quantified according to two distinct acquisition methods by (i) extrapolating from experimental acquisitions a sinogram for different noise backgrounds and (ii) reconstructing the corresponding spatial distributions in a slice using a CT reconstruction algorithm. Then we describe the low-frequency noise fingerprint and its influence on reconstructed images. Thanks to the observations, we demonstrate that some experimental choices can dramatically affect the 3D rendering of reconstructions. Thus, we propose some experimental methodologies optimizing the resulting quality and accuracy of the 3D reconstructions, with respect to the low-frequency noise characteristics observed during acquisitions.

4.
Opt Express ; 22(19): 23299-309, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25321798

ABSTRACT

We investigate in this paper a new reconstruction method in order to perform 3D Terahertz (THz) tomography using a continuous wave acquisition setup in transmission mode. This method is based on the Maximum Likelihood for TRansmission tomography (ML-TR) first developed for X-ray imaging. We optimize the Ordered Subsets Convex (OSC) implementation of the ML-TR by including the Gaussian propagation model of THz waves and take into account the intensity distributions of both blank calibration scan and dark-field measured on THz detectors. THz ML-TR reconstruction quality and accuracy are discussed and compared to other tomographic reconstructions.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Tomography, X-Ray/methods , Humans , Probability
5.
Opt Express ; 20(6): 5817-29, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418459

ABSTRACT

In this paper, a model of the beam propagation is developed according to the physical properties of THz waves used in THz computed tomography (CT) scan imaging. This model is first included in an acquisition simulator to observe and estimate the impact of the Gaussian beam intensity profile on the projection sets. Second, the model is introduced in several inversion methods as a convolution filter to perform efficient tomographic reconstructions of simulated and real acquired objects. Results obtained with three reconstruction methods (BFP, SART and OSEM) are compared to the techniques proposed in this paper. We will demonstrate an increase of the overall quality and accuracy of the 3D reconstructions.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Models, Statistical , Computer Simulation , Image Enhancement/methods , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Terahertz Radiation
6.
Opt Express ; 19(6): 5105-17, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445145

ABSTRACT

3D terahertz computed tomography has been performed using a monochromatic millimeter wave imaging system coupled with an infrared temperature sensor. Three different reconstruction methods (standard back-projection algorithm and two iterative analysis) have been compared in order to reconstruct large size 3D objects. The quality (intensity, contrast and geometric preservation) of reconstructed cross-sectional images has been discussed together with the optimization of the number of projections. Final demonstration to real-life 3D objects has been processed to illustrate the potential of the reconstruction methods for applied terahertz tomography.

SELECTION OF CITATIONS
SEARCH DETAIL