Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e30178, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726176

ABSTRACT

Developing multifunctional nanomaterials through environmentally friendly and efficient approaches is a pivotal focus in nanotechnology. This study aimed to employ a biogenic method to synthesize multifunctional copper oxide nanoparticles (LI-CuO NPs) with diverse capabilities, including antibacterial, antioxidant, and seed priming properties, as well as photocatalytic organic dye degradation and wastewater treatment potentials using Lagerstroemia indica leaf extract. The synthesized LI-CuO NPs were extensively characterized using UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform-infrared spectroscopy (FT-IR). The colloid displayed surface plasmon resonance peaks at 320 nm, characteristic of LI-CuO NPs. DLS analysis revealed an average particle size of 93.5 nm and a negative zeta potential of -20.3 mV. FTIR and XPS analyses demonstrated that LI-CuO NPs possessed abundant functional groups that acted as stabilizing agents. XRD analysis indicated pure crystalline and spherical LI-CuO NPs measuring 36 nm in size. Antibacterial tests exhibited significant differential activity of LI-CuO NPs against both gram-negative (Escherichia coli, Salmonella typhimurium) and gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. In antioxidant tests, the LI-CuO NPs demonstrated a remarkable radical scavenging activity of 97.6 % at a concentration of 400 µg mL-1. These nanoparticles were also found to enhance mustard seed germination at low concentrations. With a remarkable reusability, LI-CuO NPs exhibited excellent photocatalytic performance, with a degradation efficiency of 97.6 % at 150 µg/mL as well as a 95.6 % reduction in turbidity when applied to wastewater treatment. In conclusion, this study presents environmentally friendly method for the facile synthesis of LI-CuO NPs that could potentially offer promising applications in biomedicine, agriculture, and environmental remediation due to their multifunctional properties.

2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255978

ABSTRACT

In the face of evolving healthcare challenges, the utilization of silver nanoparticles (AgNPs) has emerged as a compelling solution due to their unique properties and versatile applications. The aim of this study was the synthesis and characterization of novel AgNPs (SB-AgNPs and SG-AgNPs, respectively) using Salvia blepharophylla and Salvia greggii leaf extracts and the evaluation of their antimicrobial, antioxidant, and antidiabetic activities. Several analytical instrumental techniques were utilized for the characterization of SB-AgNPs and SG-AgNPs, including UV-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transmission infrared (FT-IR) spectroscopy, energy-dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). FTIR analysis identified various functional groups in the leaf extracts and nanoparticles, suggesting the involvement of phytochemicals as reducing and stabilizing agents. High-resolution TEM images displayed predominantly spherical nanoparticles with average sizes of 52.4 nm for SB-AgNPs and 62.5 nm for SG-AgNPs. Both SB-AgNPs and SG-AgNPs demonstrated remarkable antimicrobial activity against Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes and Gram-negative bacteria Salmonella typhimurium and Escherichia coli. SB-AgNPs and SG-AgNPs also exhibited 90.2 ± 1.34% and 89.5 ± 1.5% DPPH scavenging and 86.5 ± 1.7% and 80.5 ± 1.2% α-amylase inhibition, respectively, at a concentration of 100 µg mL-1. Overall, AgNPs synthesized using S. blepharophylla and Salvia greggii leaf extracts may serve as potential candidates for antibacterial, antioxidant, and antidiabetic agents. Consequently, this study provides viable solutions to mitigate the current crisis of antibiotic resistance and to efficiently combat antimicrobial infections and Type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Metal Nanoparticles , Salvia , Hypoglycemic Agents , Antioxidants/pharmacology , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Escherichia coli
3.
Front Plant Sci ; 14: 1108186, 2023.
Article in English | MEDLINE | ID: mdl-36755696

ABSTRACT

Background: The sustainability of crop production is impacted by climate change and land degradation, and the advanced application of nanotechnology is of paramount importance to overcome this challenge. The development of nanomaterials based on essential nutrients like zinc could serve as a basis for nanofertilizers and nanocomposite synthesis for broader agricultural applications and quality human nutrition. Therefore, this study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using pecan (Carya illinoinensis) leaf extract and investigate their effect on the growth, physiology, nutrient content, and antioxidant properties of mustard (Brassica juncea). Methods: The ZnO NPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). Mustard plants were subjected to different concentrations of ZnONPs (0, 20, 40, 60, 80, 100 and 200 mg L-1) during the vegetative growth stage. Results: The UV-Vis spectra of ZnO NPs revealed the absorption maxima at 362 nm and FTIR identified numerous functional groups that are responsible for capping and stabilizing ZnO NPs. DLS analysis presented monodispersed ZnO NPs of 84.5 nm size and highly negative zeta potential (-22.4 mV). Overall, the application of ZnO NPs enhanced the growth, chlorophyll content (by 53 %), relative water content (by 46 %), shoot biomass, membrane stability (by 54 %) and net photosynthesis significantly in a dose-dependent manner. In addition, the supplement of the ZnO NPs augmented K, Fe, Zn and flavonoid contents as well as overcome the effect of reactive oxygen species by increasing antioxidant capacity in mustard leaves up to 97 %. Conclusions: In conclusion, ZnO NPs can be potentially used as a plant growth stimulant and as a novel soil amendment for enhancing crop yields. Besides, the biofortification of B. juncea plants with ZnO NPs helps to improve the nutritional quality of the crop and perhaps potentiates its pharmaceutical effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...