Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
2.
medRxiv ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38978649

ABSTRACT

We report a novel cause of partial lipodystrophy associated with early B cell factor 2 (EBF2) nonsense variant (EBF2 8:26033143 C>A, c.493G>T, p.E165X) in a patient with an atypical form of partial lipodystrophy. The patient presented with progressive adipose tissue loss and metabolic deterioration at pre-pubertal age. In vitro and in vivo disease modeling demonstrates that the EBF2 variant impairs adipogenesis, causing excess accumulation of undifferentiated CD34+ cells, extracellular matrix proteins, and inflammatory myeloid cells in subcutaneous adipose tissues. Thus, this EBF2 p.E165X variant disrupts adipose tissue structure and function, leading to the development of partial lipodystrophy syndrome.

3.
Eur Heart J ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028637

ABSTRACT

Atrial fibrillation (AF) is a globally prevalent cardiac arrhythmia with significant genetic underpinnings, as highlighted by recent large-scale genetic studies. A prominent clinical and genetic overlap exists between AF, heritable ventricular cardiomyopathies, and arrhythmia syndromes, underlining the potential of AF as an early indicator of severe ventricular disease in younger individuals. Indeed, several recent studies have demonstrated meaningful yields of rare pathogenic variants among early-onset AF patients (∼4%-11%), most notably for cardiomyopathy genes in which rare variants are considered clinically actionable. Genetic testing thus presents a promising opportunity to identify monogenetic defects linked to AF and inherited cardiac conditions, such as cardiomyopathy, and may contribute to prognosis and management in early-onset AF patients. A first step towards recognizing this monogenic contribution was taken with the Class IIb recommendation for genetic testing in AF patients aged 45 years or younger by the 2023 American College of Cardiology/American Heart Association guidelines for AF. By identifying pathogenic genetic variants known to underlie inherited cardiomyopathies and arrhythmia syndromes, a personalized care pathway can be developed, encompassing more tailored screening, cascade testing, and potentially genotype-informed prognosis and preventive measures. However, this can only be ensured by frameworks that are developed and supported by all stakeholders. Ambiguity in test results such as variants of uncertain significance remain a major challenge and as many as ∼60% of people with early-onset AF might carry such variants. Patient education (including pretest counselling), training of genetic teams, selection of high-confidence genes, and careful reporting are strategies to mitigate this. Further challenges to implementation include financial barriers, insurability issues, workforce limitations, and the need for standardized definitions in a fast-moving field. Moreover, the prevailing genetic evidence largely rests on European descent populations, underscoring the need for diverse research cohorts and international collaboration. Embracing these challenges and the potential of genetic testing may improve AF care. However, further research-mechanistic, translational, and clinical-is urgently needed.

4.
Genet Med ; : 101199, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38944749

ABSTRACT

Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.

5.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915639

ABSTRACT

Incomplete penetrance, or absence of disease phenotype in an individual with a disease-associated variant, is a major challenge in variant interpretation. Studying individuals with apparent incomplete penetrance can shed light on underlying drivers of altered phenotype penetrance. Here, we investigate clinically relevant variants from ClinVar in 807,162 individuals from the Genome Aggregation Database (gnomAD), demonstrating improved representation in gnomAD version 4. We then conduct a comprehensive case-by-case assessment of 734 predicted loss of function variants (pLoF) in 77 genes associated with severe, early-onset, highly penetrant haploinsufficient disease. We identified explanations for the presumed lack of disease manifestation in 701 of the variants (95%). Individuals with unexplained lack of disease manifestation in this set of disorders rarely occur, underscoring the need and power of deep case-by-case assessment presented here to minimize false assignments of disease risk, particularly in unaffected individuals with higher rates of secondary properties that result in rescue.

6.
medRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826469

ABSTRACT

Approximately 3% of the human genome consists of repetitive elements called tandem repeats (TRs), which include short tandem repeats (STRs) of 1-6bp motifs and variable number tandem repeats (VNTRs) of 7+bp motifs. TR variants contribute to several dozen mono- and polygenic diseases but remain understudied and "enigmatic," particularly relative to single nucleotide variants. It remains comparatively challenging to interpret the clinical significance of TR variants. Although existing resources provide portions of necessary data for interpretation at disease-associated loci, it is currently difficult or impossible to efficiently invoke the additional details critical to proper interpretation, such as motif pathogenicity, disease penetrance, and age of onset distributions. It is also often unclear how to apply population information to analyses. We present STRchive (S-T-archive, http://strchive.org/ ), a dynamic resource consolidating information on TR disease loci in humans from research literature, up-to-date clinical resources, and large-scale genomic databases, with the goal of streamlining TR variant interpretation at disease-associated loci. We apply STRchive -including pathogenic thresholds, motif classification, and clinical phenotypes-to a gnomAD cohort of ∼18.5k individuals genotyped at 60 disease-associated loci. Through detailed literature curation, we demonstrate that the majority of TR diseases affect children despite being thought of as adult diseases. Additionally, we show that pathogenic genotypes can be found within gnomAD which do not necessarily overlap with known disease prevalence, and leverage STRchive to interpret locus-specific findings therein. We apply a diagnostic blueprint empowered by STRchive to relevant clinical vignettes, highlighting possible pitfalls in TR variant interpretation. As a living resource, STRchive is maintained by experts, takes community contributions, and will evolve as understanding of TR diseases progresses.

7.
Genome Res ; 34(5): 796-809, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38749656

ABSTRACT

Underrepresented populations are often excluded from genomic studies owing in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high-quality set of 4094 whole genomes from 80 populations in the HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also show substantial added value from this data set compared with the prior versions of the component resources, typically combined via liftOver and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared with previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality-control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.


Subject(s)
Databases, Genetic , Genome, Human , Humans , Human Genome Project , High-Throughput Nucleotide Sequencing/methods , Genetic Variation , Genomics/methods
8.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38645134

ABSTRACT

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

9.
Article in English | MEDLINE | ID: mdl-38663031

ABSTRACT

Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.

10.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451290

ABSTRACT

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Subject(s)
Craniosynostoses , Ectodermal Dysplasia , Hearing Loss, Sensorineural , Heterozygote , Humans , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Male , Female , Craniosynostoses/genetics , Phenotype , Child, Preschool , Limb Deformities, Congenital/genetics , Child , Mutation , Infant , MAP Kinase Kinase Kinases/genetics
11.
BMC Res Notes ; 17(1): 62, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433186

ABSTRACT

OBJECTIVE: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups. RESULTS: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 inconsistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping arrays. It was determined that discrepancies resulted from clerical errors (49.09%), samples from transgender participants (3.64%) and stem cell or bone marrow transplant patients (7.27%) along with undetermined sample mix-ups (40%) for which sample swaps occurred prior to arrival at genome centers, however the exact cause of the events at the sampling sites resulting in the mix-ups were not able to be determined.


Subject(s)
Clinical Laboratory Services , High-Throughput Nucleotide Sequencing , Humans , Bone Marrow Transplantation , Genotype , Laboratories
13.
medRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38405995

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disorder that causes progressive degeneration of lower motor neurons and the subsequent loss of muscle function throughout the body. It is the second most common recessive disorder in individuals of European descent and is present in all populations. Accurate tools exist for diagnosing SMA from genome sequencing data. However, there are no publicly available tools for GRCh38-aligned data from panel or exome sequencing assays which continue to be used as first line tests for neuromuscular disorders. This deficiency creates a critical gap in our ability to diagnose SMA in large existing rare disease cohorts, as well as newly sequenced exome and panel datasets. We therefore developed and extensively validated a new tool - SMA Finder - that can diagnose SMA not only in genome, but also exome and panel sequencing samples aligned to GRCh37, GRCh38, or T2T-CHM13. It works by evaluating aligned reads that overlap the c.840 position of SMN1 and SMN2 in order to detect the most common molecular causes of SMA. We applied SMA Finder to 16,626 exomes and 3,911 genomes from heterogeneous rare disease cohorts sequenced at the Broad Institute Center for Mendelian Genomics as well as 1,157 exomes and 8,762 panel sequencing samples from Tartu University Hospital. SMA Finder correctly identified all 16 known SMA cases and reported nine novel diagnoses which have since been confirmed by clinical testing, with another four novel diagnoses undergoing validation. Notably, out of the 29 total SMA positive cases, 23 had an initial clinical diagnosis of muscular dystrophy, congenital myasthenic syndrome, or myopathy. This underscored the frequency with which SMA can be misdiagnosed as other neuromuscular disorders and confirmed the utility of using SMA Finder to reanalyze phenotypically diverse neuromuscular disease cohorts. Finally, we evaluated SMA Finder on 198,868 individuals that had both exome and genome sequencing data within the UK Biobank (UKBB) and found that SMA Finder's overall false positive rate was less than 1 / 200,000 exome samples, and its positive predictive value (PPV) was 97%. We also observed 100% concordance between UKBB exome and genome calls. This analysis showed that, even though it is located within a segmental duplication, the most common causal variant for SMA can be detected with comparable accuracy to monogenic disease variants in non-repetitive regions. Additionally, the high PPV demonstrated by SMA Finder, the existence of treatment options for SMA in which early diagnosis is imperative for therapeutic benefit, as well as widespread availability of clinical confirmatory testing for SMA, warrants the addition of SMN1 to the ACMG list of genes with reportable secondary findings after genome and exome sequencing.

14.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38370830

ABSTRACT

Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.

15.
medRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38293186

ABSTRACT

Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begins in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2 , have been shown to cause distal myopathy. ACTN2 , a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered, however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2 -related diseases, actininopathies, persists. Objective: The objective of the study is to characterize the pathomechanisms underlying actininopathies. Methods: Functional characterization in C2C12 cell models of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. Results: The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do produce alpha-actinin-2 aggregates. Interpretation: The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.

16.
Genet Med ; 26(4): 101073, 2024 04.
Article in English | MEDLINE | ID: mdl-38245859

ABSTRACT

PURPOSE: The 100,000 Genomes Project diagnosed a quarter of affected participants, but 26% of diagnoses were not on the applied gene panel(s); with many being de novo variants. Assessing biallelic variants without a gene panel is more challenging. METHODS: We sought to identify missed biallelic diagnoses using GenePy, which incorporates allele frequency, zygosity, and a user-defined deleterious metric, generating an aggregate GenePy score per gene, per participant. We calculated GenePy scores for 2862 recessive disease genes in 78,216 100,000 Genomes Project participants. For each gene, we ranked participant GenePy scores and scrutinized affected participants without a diagnosis, whose scores ranked among the top 5 for each gene. In cases which participant phenotypes overlapped with the disease gene of interest, we extracted rare variants and applied phase, ClinVar, and ACMG classification. RESULTS: 3184 affected individuals without a molecular diagnosis had a top-5-ranked GenePy score and 682 of 3184 (21%) had phenotypes overlapping with a top-ranking gene. In 122 of 669 (18%) phenotype-matched cases (excluding 13 withdrawn participants), we identified a putative missed diagnosis (2.2% of all undiagnosed participants). A further 334 of 669 (50%) cases have a possible missed diagnosis but require functional validation. CONCLUSION: Applying GenePy at scale has identified 456 potential diagnoses, demonstrating the value of novel diagnostic strategies.


Subject(s)
Missed Diagnosis , Humans , Virulence , Gene Frequency/genetics , Phenotype , Genes, Recessive
18.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-36747613

ABSTRACT

Underrepresented populations are often excluded from genomic studies due in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high quality set of 4,094 whole genomes from HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also demonstrate substantial added value from this dataset compared to the prior versions of the component resources, typically combined via liftover and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.

19.
Genet Med ; 26(3): 101036, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054408

ABSTRACT

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Subject(s)
Genetic Variation , Humans , Alleles , Genetic Variation/genetics , Penetrance , Gene Frequency
20.
Nat Genet ; 56(1): 152-161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057443

ABSTRACT

Recessive diseases arise when both copies of a gene are impacted by a damaging genetic variant. When a patient carries two potentially causal variants in a gene, accurate diagnosis requires determining that these variants occur on different copies of the chromosome (that is, are in trans) rather than on the same copy (that is, in cis). However, current approaches for determining phase, beyond parental testing, are limited in clinical settings. Here we developed a strategy for inferring phase for rare variant pairs within genes, leveraging genotypes observed in the Genome Aggregation Database (v2, n = 125,748 exomes). Our approach estimates phase with 96% accuracy, both in trio data and in patients with Mendelian conditions and presumed causal compound heterozygous variants. We provide a public resource of phasing estimates for coding variants and counts per gene of rare variants in trans that can aid interpretation of rare co-occurring variants in the context of recessive disease.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Humans , Exome/genetics , Exome Sequencing , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL