Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Ann Clin Transl Neurol ; 9(3): 326-338, 2022 03.
Article in English | MEDLINE | ID: mdl-35171517

ABSTRACT

OBJECTIVE: While the anticipated rise of disease-modifying therapies calls for reliable trial outcome parameters, fluid biomarkers are lacking in spastic paraplegia type 4 (SPG4), the most prevalent form of hereditary spastic paraplegia. We therefore investigated serum neurofilament light chain (sNfL) as a potential therapy response, diagnostic, monitoring, and prognostic biomarker in SPG4. METHODS: We assessed sNfL levels in 93 patients with SPG4 and 60 healthy controls. The longitudinal study of sNfL levels in SPG4 patients covered a baseline, 1-year follow-up and 2-year follow-up visit. RESULTS: Levels of sNfL were significantly increased in patients with genetically confirmed SPG4 compared to healthy controls matched in age and sex (p = 0.013, r = 0.2). Our cross-sectional analysis revealed a greater difference in sNfL levels between patients and controls in younger ages with decreasing fold change of patient sNfL elevation at older ages. Over our observational period of 2 years, sNfL levels remained stable in SPG4 patients. Disease severity and progression did not correlate with sNfL levels. INTERPRETATION: Our longitudinal data indicate a stable turnover of sNfL in manifest SPG4; therefore, sNfL levels are not suitable to monitor disease progression in SPG4. However, sNfL may be valuable as a therapy response biomarker, since its turnover could be modified by interventions. As the course of sNfL levels appears to be most dynamic around the onset of SPG4, the ability to detect a therapy response appears to be especially promising in younger patients, matching the need to initiate treatment in early disease stages.


Subject(s)
Spastic Paraplegia, Hereditary , Biomarkers , Cross-Sectional Studies , Humans , Intermediate Filaments , Longitudinal Studies , Paraplegia , Spastic Paraplegia, Hereditary/diagnosis
4.
Ann Clin Transl Neurol ; 8(5): 1122-1131, 2021 05.
Article in English | MEDLINE | ID: mdl-33819388

ABSTRACT

OBJECTIVE: Despite the need for diagnostics and research, data on fluid biomarkers in hereditary spastic paraplegia (HSP) are scarce. We, therefore, explore Neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF) of patients with hereditary spastic paraplegia and provide information on the influence of demographic factors. METHODS: The study recruited 59 HSP cases (33 genetically confirmed) and 59 controls matched in age and sex. Neurofilament light chain levels were assessed by enzyme-linked immunosorbent assay. The statistical analysis included the effects of age, sex, and genetic status (confirmed vs. not confirmed). RESULTS: Levels of CSF NfL were significantly increased in patients with hereditary spastic paraplegia compared to controls (median 741 pg/mL vs. 387 pg/mL, p < 0.001). Age (1.4% annual increase) and male sex (81% increase) impacted CSF NfL levels in patients. The age-dependent increase of CSF NfL levels was steeper in controls (2.6% annual increase). Thus, the CSF NfL ratio of patients and matched controls-expressing patients' fold increases in CSF NfL-declined considerably with age. INTERPRETATION: CSF NfL is a reliable cross-sectional biomarker in hereditary spastic paraplegia. Sex is a relevant factor to consider, as male patients have remarkably higher CSF NfL levels. While levels also increase with age, the gap between patients and controls is narrowing in older subjects. This indicates distinct temporal dynamics of CSF NfL in patients with hereditary spastic paraplegia, with a rise around phenotypic conversion and comparatively static levels afterward.


Subject(s)
Neurofilament Proteins/cerebrospinal fluid , Spastic Paraplegia, Hereditary/cerebrospinal fluid , Spastic Paraplegia, Hereditary/diagnosis , Adolescent , Adult , Age Factors , Aged , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Sex Factors , Young Adult
5.
Parkinsonism Relat Disord ; 74: 6-11, 2020 05.
Article in English | MEDLINE | ID: mdl-32268254

ABSTRACT

BACKGROUND: Charcot-Marie-Tooth disease type 4J (CMT4J) originates from mutations in the FIG4 gene and leads to distal muscle weakness. Two null alleles of FIG4 cause Yunis Varón syndrome with severe central nervous system involvement, cleidocranial dysmorphism, absent thumbs and halluces and early death. OBJECTIVES: To analyse the phenotypic spectrum of FIG4-related disease and explore effects of residual FIG4 protein. METHODS: Phenotyping of five new patients with FIG4-related disease. Western Blot analyses of FIG4 from patient fibroblasts. RESULTS: Next generation sequencing revealed compound heterozygous variants in FIG4 in five patients. All five patients presented with peripheral neuropathy, various degree of dysmorphism and a central nervous system involvement comprising Parkinsonism in 3/5 patients, cerebellar ataxia (1/5), spasticity of lower limbs (1/5), epilepsy (1/5) and/or cognitive deficits (2/5). Onset varied between the first and the seventh decade. There was no residual FIG4 protein detectable in fibroblasts of the four analysed patients. CONCLUSION: This study extends the phenotypic spectrum of FIG4-related disease to Parkinsonism as a feature and demonstrates new phenotypes on a continuum between CMT4J and Yunis Varón syndrome.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Cleidocranial Dysplasia/genetics , Ectodermal Dysplasia/genetics , Flavoproteins/genetics , Limb Deformities, Congenital/genetics , Micrognathism/genetics , Parkinsonian Disorders/genetics , Phosphoric Monoester Hydrolases/genetics , Adult , Aged , Charcot-Marie-Tooth Disease/physiopathology , Cleidocranial Dysplasia/physiopathology , Ectodermal Dysplasia/physiopathology , Female , Fibroblasts , Humans , Limb Deformities, Congenital/physiopathology , Male , Micrognathism/physiopathology , Middle Aged , Mutation , Parkinsonian Disorders/physiopathology , Pedigree , Phenotype , Young Adult
7.
Nat Commun ; 10(1): 4790, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636353

ABSTRACT

Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trisphosphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degradation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170, which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause of autosomal recessive HSP in four unrelated families and functionally evaluate the consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus prioritize this pathway for therapeutic interventions.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/genetics , Fibroblasts/metabolism , Neurons/metabolism , Spastic Paraplegia, Hereditary/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Animals , Calcium/metabolism , Cell Line, Tumor , Child , Child, Preschool , Endoplasmic Reticulum/metabolism , Female , Gene Knockdown Techniques , High-Throughput Nucleotide Sequencing , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Middle Aged , Primary Cell Culture , Signal Transduction , Skin/cytology , Spastic Paraplegia, Hereditary/metabolism , Zebrafish
9.
Brain ; 142(6): 1561-1572, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31135052

ABSTRACT

The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the 'WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers.


Subject(s)
Heredodegenerative Disorders, Nervous System/genetics , Phenotype , Spastic Paraplegia, Hereditary/genetics , Child , Cohort Studies , Demyelinating Diseases/genetics , Female , Humans , Male , Mixed Function Oxygenases/genetics , Mutation/genetics , Pedigree , Retrospective Studies , Spastic Paraplegia, Hereditary/classification
10.
Am J Hum Genet ; 104(4): 767-773, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929741

ABSTRACT

The diagnostic gap for rare neurodegenerative diseases is still considerable, despite continuous advances in gene identification. Many novel Mendelian genes have only been identified in a few families worldwide. Here we report the identification of an autosomal-dominant gene for hereditary spastic paraplegia (HSP) in 10 families that are of diverse geographic origin and whose affected members all carry unique truncating changes in a circumscript region of UBAP1 (ubiquitin-associated protein 1). HSP is a neurodegenerative disease characterized by progressive lower-limb spasticity and weakness, as well as frequent bladder dysfunction. At least 40% of affected persons are currently undiagnosed after exome sequencing. We identified pathological truncating variants in UBAP1 in affected persons from Iran, USA, Germany, Canada, Spain, and Bulgarian Roma. The genetic support ranges from linkage in the largest family (LOD = 8.3) to three confirmed de novo mutations. We show that mRNA in the fibroblasts of affected individuals escapes nonsense-mediated decay and thus leads to the expression of truncated proteins; in addition, concentrations of the full-length protein are reduced in comparison to those in controls. This suggests either a dominant-negative effect or haploinsufficiency. UBAP1 links endosomal trafficking to the ubiquitination machinery pathways that have been previously implicated in HSPs, and UBAP1 provides a bridge toward a more unified pathophysiology.


Subject(s)
Carrier Proteins/genetics , Mutation , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Databases, Factual , Disease Models, Animal , Endosomes/metabolism , Family Health , Female , Fibroblasts/metabolism , Genes, Dominant , Genetic Linkage , Genetic Predisposition to Disease , Genomics , HEK293 Cells , Haploinsufficiency , Humans , Male , Middle Aged , Pedigree , Protein Isoforms , Young Adult , Zebrafish
11.
Stem Cell Res ; 35: 101336, 2019 03.
Article in English | MEDLINE | ID: mdl-30606667

ABSTRACT

Gaucher disease is the most common autosomal recessive lysosomal storage disorder, caused by mutations in the ß-glucocerebrosidase gene GBA. Here we describe generation of iPSC from skin-derived fibroblasts from two unrelated individuals with neuronopathic forms of Gaucher disease. The donor for line iPSC-GBA-1, a 21 month old girl, carried the recurring GBA mutation c.1448 T > C, p.Leu483Pro at homozygous state; fibroblasts for line iPS-GBA-2 were obtained from a 4 year old girl compound heterozygous for the GBA mutations c.667 T > C, p.Trp223Arg and c.1226A > G, p.Asn409Ser. iPSCs were developed using integration free episomal vectors (OCT4, KLF4; L-MYC, SOX2 (OSKM) and LIN28). Resource table.


Subject(s)
Cell Line , Gaucher Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Alleles , Child, Preschool , Female , Gaucher Disease/genetics , Gaucher Disease/pathology , Glucosylceramidase/metabolism , Homozygote , Humans , Induced Pluripotent Stem Cells/pathology , Infant , Kruppel-Like Factor 4 , Mutation
12.
Brain ; 140(6): 1561-1578, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28459997

ABSTRACT

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Subject(s)
Intellectual Disability/genetics , Muscle Spasticity/genetics , Optic Atrophy/genetics , RNA Polymerase III/genetics , Spastic Paraplegia, Hereditary/genetics , Spinocerebellar Ataxias/genetics , Aged , Cell Culture Techniques , Exons/genetics , Female , Genetic Association Studies , Humans , Induced Pluripotent Stem Cells , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Introns/genetics , Male , Middle Aged , Muscle Spasticity/diagnostic imaging , Muscle Spasticity/physiopathology , Mutation , Optic Atrophy/diagnostic imaging , Optic Atrophy/physiopathology , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/diagnostic imaging , Spastic Paraplegia, Hereditary/physiopathology , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/physiopathology
13.
Mol Genet Genomic Med ; 5(3): 280-286, 2017 May.
Article in English | MEDLINE | ID: mdl-28546998

ABSTRACT

BACKGROUND: The genetic causes of many rare inherited motoneuron diseases and ataxias (MND and ATX) remain largely unresolved, especially for sporadic patients, despite tremendous advances in gene discovery. Whole exome data is often available for patients, but it is rarely evaluated for unusual inheritance patterns, such as uniparental disomy (UPD). UPD is the inheritance of two copies of a chromosomal region from one parent, which may generate homozygosity for a deleterious recessive variant from only one carrier-parent. Detection of UPD-caused homozygous disease-causing variants is detrimental to accurate genetic counseling. Whole-exome sequencing can allow for the detection of such events. METHODS: We systematically studied the exomes of a phenotypically heterogeneous cohort of unresolved cases (n = 96 families) to reveal UPD events hindering a diagnosis and to evaluate the prevalence of UPD in recessive MND and ATX. RESULTS: One hereditary spastic paraplegia case harbored homozygous regions spanning 80% of chromosome 16. A homozygous disease-causing mutation in the SPG35 disease gene was then identified within this region. CONCLUSION: This study demonstrates the ability to detect UPD in exome data of index patients. Our results suggest that UPD is a rare mechanism for recessive MND and ATX.

14.
Brain ; 140(2): 287-305, 2017 02.
Article in English | MEDLINE | ID: mdl-28137957

ABSTRACT

Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders characterized by progressive spasticity of the lower limbs due to degeneration of the corticospinal motor neurons. In a Bulgarian family with three siblings affected by complicated hereditary spastic paraplegia, we performed whole exome sequencing and homozygosity mapping and identified a homozygous p.Thr512Ile (c.1535C > T) mutation in ATP13A2. Molecular defects in this gene have been causally associated with Kufor-Rakeb syndrome (#606693), an autosomal recessive form of juvenile-onset parkinsonism, and neuronal ceroid lipofuscinosis (#606693), a neurodegenerative disorder characterized by the intracellular accumulation of autofluorescent lipopigments. Further analysis of 795 index cases with hereditary spastic paraplegia and related disorders revealed two additional families carrying truncating biallelic mutations in ATP13A2. ATP13A2 is a lysosomal P5-type transport ATPase, the activity of which critically depends on catalytic autophosphorylation. Our biochemical and immunocytochemical experiments in COS-1 and HeLa cells and patient-derived fibroblasts demonstrated that the hereditary spastic paraplegia-associated mutations, similarly to the ones causing Kufor-Rakeb syndrome and neuronal ceroid lipofuscinosis, cause loss of ATP13A2 function due to transcript or protein instability and abnormal intracellular localization of the mutant proteins, ultimately impairing the lysosomal and mitochondrial function. Moreover, we provide the first biochemical evidence that disease-causing mutations can affect the catalytic autophosphorylation activity of ATP13A2. Our study adds complicated hereditary spastic paraplegia (SPG78) to the clinical continuum of ATP13A2-associated neurological disorders, which are commonly hallmarked by lysosomal and mitochondrial dysfunction. The disease presentation in our patients with hereditary spastic paraplegia was dominated by an adult-onset lower-limb predominant spastic paraparesis. Cognitive impairment was present in most of the cases and ranged from very mild deficits to advanced dementia with fronto-temporal characteristics. Nerve conduction studies revealed involvement of the peripheral motor and sensory nerves. Only one of five patients with hereditary spastic paraplegia showed clinical indication of extrapyramidal involvement in the form of subtle bradykinesia and slight resting tremor. Neuroimaging cranial investigations revealed pronounced vermian and hemispheric cerebellar atrophy. Notably, reduced striatal dopamine was apparent in the brain of one of the patients, who had no clinical signs or symptoms of extrapyramidal involvement.


Subject(s)
Genetic Predisposition to Disease/genetics , Mutation/genetics , Proton-Translocating ATPases/genetics , Spastic Paraplegia, Hereditary/genetics , Adult , Animals , Cells, Cultured/cytology , Cells, Cultured/ultrastructure , Chlorocebus aethiops , Cognition Disorders/etiology , Cognition Disorders/genetics , Enzyme Inhibitors/pharmacology , Family Health , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Leupeptins/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Mental Disorders/etiology , Mental Disorders/genetics , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Neuropsychological Tests , Psychiatric Status Rating Scales , Spastic Paraplegia, Hereditary/complications , Spastic Paraplegia, Hereditary/diagnostic imaging
15.
Biochem Biophys Res Commun ; 465(1): 35-40, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26220345

ABSTRACT

Glucosylceramide is a membrane glycolipid made up of the sphingolipid ceramide and glucose, and has a wide intracellular distribution. Glucosylceramide is degraded to ceramide and glucose by distinct, non-homologous enzymes, including glucocerebrosidase (GBA), localized in the endolysosomal pathway, and ß-glucosidase 2 (GBA2), which is associated with the plasma membrane and/or the endoplasmic reticulum. It is well established that mutations in the GBA gene result in endolysosomal glucosylceramide accumulation, which triggers Gaucher disease. In contrast, the biological significance of GBA2 is less well understood. GBA2-deficient mice present with male infertility, but humans carrying mutations in the GBA2 gene are affected with a combination of cerebellar ataxia and spastic paraplegia, as well as with thin corpus callosum and cognitive impairment (SPastic Gait locus #46, SPG46). To improve our understanding of the biochemical consequences of the GBA2 mutations, we have evaluated five nonsense and five missense GBA2 mutants for their enzyme activity. In transfected cells, the mutant forms of GBA2 were present in widely different amounts, ranging from overabundant to very minor, compared to the wild type enzyme. Nevertheless, none of the GBA2 mutant cDNAs raised the enzyme activity in transfected cells, in contrast to the wild-type enzyme. These results suggest that SPG46 patients have a severe deficit in GBA2 activity, because the GBA2 mutants are intrinsically inactive and/or reduced in amount. This assessment of the expression levels and enzyme activities of mutant forms of GBA2 offers a first insight in the biochemical basis of the complex pathologies seen in SPG46.


Subject(s)
Cerebellar Ataxia/genetics , Mutation , Spastic Paraplegia, Hereditary/genetics , beta-Glucosidase/genetics , Animals , COS Cells , Cell Line, Tumor , Cerebellar Ataxia/enzymology , Cerebellar Ataxia/pathology , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/pathology , Enzyme Assays , Gene Expression Regulation , Glucosylceramidase , HeLa Cells , Humans , Lysosomes/enzymology , Lysosomes/pathology , Neurons/enzymology , Neurons/pathology , Plasmids/chemistry , Plasmids/metabolism , Signal Transduction , Spastic Paraplegia, Hereditary/enzymology , Spastic Paraplegia, Hereditary/pathology , Transfection , Transgenes , beta-Glucosidase/deficiency
16.
Neurology ; 82(22): 2007-16, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24808017

ABSTRACT

OBJECTIVE: To identify a novel disease gene in 2 families with autosomal recessive hereditary spastic paraplegia (HSP). METHODS: We used whole-exome sequencing to identify the underlying genetic disease cause in 2 families with apparently autosomal recessive spastic paraplegia. Endogenous expression as well as subcellular localization of wild-type and mutant protein were studied to support the pathogenicity of the identified mutations. RESULTS: In 2 families, we identified compound heterozygous or homozygous mutations in the kinesin gene KIF1C to cause hereditary spastic paraplegia type 58 (SPG58). SPG58 can be complicated by cervical dystonia and cerebellar ataxia. The same mutations in a heterozygous state result in a mild or subclinical phenotype. KIF1C mutations in SPG58 affect the domains involved in adenosine triphosphate hydrolysis and microtubule binding, key functions for this microtubule-based motor protein. CONCLUSIONS: KIF1C is the third kinesin gene involved in the pathogenesis of HSPs and is characterized by a mild dominant and a more severe recessive disease phenotype. The identification of KIF1C as an HSP disease gene further supports the key role of intracellular trafficking processes in the pathogenesis of hereditary axonopathies.


Subject(s)
Kinesins/genetics , Mutation/genetics , Spastic Paraplegia, Hereditary/genetics , Adult , Cell Movement/genetics , Female , Germany , Heterozygote , Homozygote , Humans , Intracellular Space/genetics , Male , Middle Aged , Pedigree , Phenotype , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...