Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 490
Filter
1.
Pathol Res Pract ; 262: 155554, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39226803

ABSTRACT

BACKGROUND: Desmoglein-2 (DSG2) has been reported to play pivotal roles in various diseases. However, its roles in cervical cancer (CC) remain insufficiently elucidated. Here, we aimed to comprehensively explore the functional mechanisms of DSG2 in CC using bioinformatics and experimental methods. METHODS: Several online databases, including Gene Expression Profiling Interactive Analysis (GEPIA), ONCOMINE, LinkedOmics, MetaScape, Human protein atlas (HPA), OMICS and single-cell RNA sequencing (scRNA-seq) data were used to explore the expression, prognosis, gene mutations, and potential signaling pathway of DSG2 in CC. Quantitative real-time PCR (qRT-PCR) and western blotting were used to measure DSG2 expression in collected samples. Experimental assays were conducted to verify the effects of dysregulated DSG2 on cervical cell lines in vitro. RESULTS: Bioinformatic analyses revealed that DSG2 was significantly up-regulated in CC compared to normal cervical tissues at both mRNA and protein levels. Elevated DSG2 levels were also associated with poor prognosis and clinical parameters (e.g., cancer stages, tumor grade, nodal metastasis status, etc.). DSG2 expression was predominantly observed in epithelial cells, increasing with disease progression on a single-cell resolution. Additionally, up-regulation of DSG2 significantly enhanced tumor purity by reducing the infiltration of immune cells (e.g., B cells, T cells, NK cells, etc.). Over-expression of DSG2 was further validated in collected CC samples at both mRNA and protein levels. Knockdown of DSG2 markedly reduced the proliferation and invasion of CC cell lines in vitro. CONCLUSIONS: In summary, elevated levels of DSG2 were significantly associated with poor prognosis and diminished immune infiltration in CC. Thus, DSG2 may serve as a potential therapeutic and diagnostic biomarker for CC.


Subject(s)
Desmoglein 2 , Gene Expression Regulation, Neoplastic , Up-Regulation , Uterine Cervical Neoplasms , Desmoglein 2/genetics , Desmoglein 2/metabolism , Humans , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/immunology , Female , Cell Proliferation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor
2.
Ecotoxicol Environ Saf ; 285: 117068, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321528

ABSTRACT

BACKGROUND: Air pollution-related neoplasms are a major global public health issue and are one of the leading causes of death worldwide. Air pollution is one of the important risk factors of air pollution-related neoplasms and is associated with a variety of air pollution-related neoplasms.The primary objective of this study was to estimate the epidemiological patterns of death rates and disability-adjusted life years (DALYs) associated with air pollution-related neoplasms on a global scale, covering the period from 1990 to 2019. Furthermore, we aimed to predict the trends in these epidemiological patterns up to 2050. By achieving these goals, our study seeks to provide a comprehensive understanding of the potential causes underlying the observed disparities in neoplasm-related health outcomes, ultimately contributing to the development of effective strategies for addressing this major public health issue. METHODS: Based on data from the 2019 Global Burden of Disease (GBD) study, the indicators of the air pollution-related neoplasms disease burden was the numbers and age-standardized rates (ASR) of deaths and disability-adjusted life years (DALYs) from 1990 to 2019. First, we compared the burden of air pollution-related neoplasms and temporal trends by gender, age, socio-demographic index (SDI), region, and country. Furthermore, driving factors and improvement potential were evaluated using decomposition and frontier analysis. Finally, forecasting analyses of the changing trend in the burden of air pollution-related neoplasm up to 2050 was conducted based on time series forecasting models. RESULTS: In 2019, air pollution-related neoplasms accounted for 387.45 million (95 % UI 288.04-490.06 million) deaths and 8951.97 million (95 % UI 6680.89-11342.60 million) DALYs globally. Deaths and DALYs demonstrated an upward trend from 1990 to 2019, while their ASR showed a downward trend. The disease burden and the decline degree of males were both significantly higher than that of females, and the high burden was mainly in the elderly groups. The middle SDI region possessed the highest burden with the most significant upward trend, while the high SDI region had the lowest burden with the most significant downward trend. Decomposition analyses represented that the increase in the overall deaths and DALYs of air pollution-related neoplasms was mainly driven by population growth. The predictive analyses expected that the deaths and DALYs of air pollution-related neoplasms will continue to rise, while their corresponding ASR will decrease by 2050. CONCLUSION: The global burden of air pollution-related neoplasms remained high, and deaths and DALYs will be on upward trends up to 2050, with differences among genders, ages, SDI levels, GBD regions, and countries. It is essential to understand the air pollution-related neoplasm burden and contributing epidemiological factors for implementing effective and factor-tailored interventions to reduce the global burden.

3.
Acta Pharm Sin B ; 14(8): 3327-3361, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220869

ABSTRACT

Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.

4.
Adv Sci (Weinh) ; : e2405308, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234812

ABSTRACT

Incorporation of CO into substrates to construct high-value carbonyl compounds is an intensive industrial carbonylation procedure, however, high toxicity and wide explosion limits (12.5-74.0 vol% in air) of CO limit its application in industrial production. The development of a CO-free catalytic system for carbonylation is one of ideal methods, but full of challenge. Herein, this study reports the CO-free aminocarbonylation conversion of terminal alkynes synergistically catalyzed by a unique Co(ІІ)/Ag(І) metal-organic framework (MOF), in which the combination of isocyanides and O2 is employed as safe and green source of aminocarbonyl. This reaction has broad substrate applicability in terminal alkyne and isocyanides components with 100% atom economy. The bimetal MOF catalyst can be recycled at least five times without substantial loss of catalytic activities. Mechanistic investigations demonstrate that the synergistic effect between Ag(I) and Co(II) sites can efficiently activate terminal alkyne and isocyanides, respectively. Free radical capture experiments, FT-IR analysis and theoretical explorations further reveal that terminal alkynes and isocyanides can be catalytically transformed into an anionic intermediate through heterolysis pathways. This work provides secure and practical access to carbonylation as well as a new approach to aminocarbonylation of terminal alkynes.

5.
Int J Biol Macromol ; 279(Pt 3): 135462, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251002

ABSTRACT

Due to excellent flexibility and dispersibility, 2D graphene oxide (GO) is regarded as one of the prospective materials for preparing self-supporting electrode material. Nevertheless, the self-stacking characteristic of GO significantly restricts the ion transmission and accessibility in GO-based electrodes, especially in the direction perpendicular to the electrode surface. Herein, a novel composite film was fabricated from GO and 3D porous carbon (PC) through vacuum filtration combined with thermal reduction strategy. The combination of GO and PC not only avoids the self-stacking of GO, but also exposes more active sites for ions in the inner. A massive released nitrogen and oxygen-containing gases during the thermal reduction endows the reduced graphene oxide (RGO) with abundant porous and CC, which contributes to the energy storage in the direction perpendicular to the electrode surface. Besides, the high specific surface area of the prepared composite film is favorable for the storage and release of charge on the electrode surface. Benefiting from the above characteristics, the electrode assembled by the as-prepared film exhibits ultrahigh areal/volumetric specific capacitance in supercapacitor and ZIHCs (Zinc ion hybrid capacitors). This work provides a promising approach for the development of advanced self-supported electrode materials with desirable electrochemical properties.

6.
Front Endocrinol (Lausanne) ; 15: 1351982, 2024.
Article in English | MEDLINE | ID: mdl-39257906

ABSTRACT

Background: In recent years, the incidence of Endometrial cancer (EC) has been on the rise due to high-fat, high-calorie diets and low-exercise lifestyles. However, the relationships between metabolic disorders and the progression of EC remain uncertain. The purpose of our study was to explore the potential association between obesity, hypertension, hyperglycemia and clinicopathologic characteristics in EC patients. Methods: In categorical variables, Chi-square tests were used to calculate P values. Univariate logistic regression and multivariate logistic regression were used to identify the risk factors of myometrial invasion>1/2 and lymph node metastasis. Overall survival (OS) was estimated using the Kaplan-Meier method. Results: The study included 406 individuals with EC, 62.6% had type I and 37.4% had type II. Hypertension was seen in 132 (32.5%), hyperglycemia in 75 (18.5%), and overweight or obesity in 217 (53.4%). Hypertension, hyperglycemia, and obesity are strongly associated with the clinicopathologic features of EC. Multivariate logistic regression revealed that hyperglycemia (OR=2.439,95% CI: 1.025-5.804, P = 0.044) was a risk factor for myometrial invasion depth >1/2 in patients with type I EC, and hypertension (OR=32.124,95% CI: 3.287-313.992, P = 0.003) was a risk factor for lymph node metastasis in patients with type I EC. Survival analysis found that hyperglycemia (P < 0.001) and hypertension (P = 0.002) were associated with OS in type I EC. Neither hyperglycemia, hypertension, nor obesity were associated with the prognosis in type II EC. Conclusion: Hyperglycemia was a risk factor for myometrial invasion depth >1/2 in patients with type I EC and hypertension was a risk factor for lymph node metastasis in patients with type I EC. Hypertension and hyperglycemia were associated with poor prognosis in patients with type I EC.


Subject(s)
Endometrial Neoplasms , Hyperglycemia , Hypertension , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/complications , Endometrial Neoplasms/mortality , Endometrial Neoplasms/epidemiology , Middle Aged , Hyperglycemia/complications , Hyperglycemia/epidemiology , Aged , Hypertension/complications , Hypertension/epidemiology , Risk Factors , Obesity/complications , Lymphatic Metastasis , Prognosis , Adult , Metabolic Diseases/epidemiology , Metabolic Diseases/pathology , Metabolic Diseases/complications , Retrospective Studies
7.
Free Radic Biol Med ; 224: 740-756, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313012

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons and the formation of α-synuclein aggregates. Mitochondrial dysfunction and oxidative stress are pivotal in PD pathogenesis, with impaired mitophagy contributing to the accumulation of mitochondrial damage. Hederagenin (Hed), a natural triterpenoid, has shown potential neuroprotective effects; however, its mechanisms of action in PD models are not fully understood. METHOD: We investigated the effects of Hed on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in SH-SY5Y cells by assessing cell viability, mitochondrial function, and oxidative stress markers. Mitophagy induction was evaluated using autophagy and mitophagy inhibitors and fluorescent staining techniques. Additionally, transgenic Caenorhabditis elegans (C. elegans) models of PD were used to validate the neuroprotective effects of Hed in vivo by focusing on α-synuclein aggregation, mobility, and dopaminergic neuron integrity. RESULTS: Hed significantly enhanced cell viability in 6-OHDA-treated SH-SY5Y cells by inhibiting cell death and reducing oxidative stress. It ameliorated mitochondrial damage, evidenced by decreased mitochondrial superoxide production, restored membrane potential, and improved mitochondrial morphology. Hed also induced mitophagy, as shown by increased autophagosome formation and reduced oxidative stress; these effects were diminished by autophagy and mitophagy inhibitors. In C. elegans models, Hed activated mitophagy and reduced α-synuclein aggregation, improved mobility, and mitigated the loss of dopaminergic neurons. RNA interference targeting the mitophagy-related genes pdr-1 and pink-1 partially reversed these benefits, underscoring the role of mitophagy in Hed's neuroprotective actions. CONCLUSION: Hed exhibits significant neuroprotective effects in both in vitro and in vivo PD models by enhancing mitophagy, reducing oxidative stress, and mitigating mitochondrial dysfunction. These findings suggest that Hed holds promise as a therapeutic agent for PD, offering new avenues for future research and potential drug development.

8.
Article in English | MEDLINE | ID: mdl-39112826

ABSTRACT

ALK/HDACs dual target inhibitor (PT-54) was a 2,4-pyrimidinediamine derivative synthesized based on the pharmacophore merged strategy that inhibits both anaplastic lymphoma kinase (ALK) and histone deacetylases (HDACs), which has demonstrated significant efficacy in treating multiple cancers. However, its poor solubility in water limited its clinical application. In this study, we prepared PT-54 liposomes (PT-54-LPs) by the membrane hydration method to overcome this defect. The encapsulation efficiency (EE) and particle size were used as evaluation indicators to explore the preparation conditions of PT-54-LPs. The morphology, particle size, EE, drug loading content (DLC), drug release properties, and stability of PT-54-LPs were further investigated. In vitro drug release studies showed that PT-54-LPs exhibited significant slow-release properties compared with free PT-54. PT-54-LPs also showed better tumor inhibitory effects than free PT-54 without significant adverse effects. These results suggested that PT-54-LPs displayed sustained drug release and significantly improved the tumor selectivity of PT-54. Thus, PT-54-LPs showed significant promise in enhancing anticancer efficiency.

9.
Plant J ; 120(1): 76-90, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39139125

ABSTRACT

Soil salinity significantly limits rice productivity, but it is poorly understood how excess sodium (Na+) is delivered to the grains at the reproductive stage. Here, we functionally characterized OsHAK4, a member of the clade IV HAK/KUP/KT transporter subfamily in rice. OsHAK4 was localized to the plasma membrane and exhibited influx transport activity for Na+, but not for K+. Analysis of organ- and growth stage-dependent expression patterns showed that very low expression levels of OsHAK4 were detected at the vegetative growth stage, but its high expression in uppermost node I, peduncle, and rachis was found at the reproductive stage. Immunostaining indicated OsHAK4 localization in the phloem region of node I, peduncle, and rachis. Knockout of OsHAK4 did not affect the growth and Na+ accumulation at the vegetative stage. However, at the reproductive stage, the hak4 mutants accumulated higher Na+ in the peduncle, rachis, husk, and brown rice compared to the wild-type rice. Element imaging revealed higher Na+ accumulation at the phloem region of the peduncle in the mutants. These results indicate that OsHAK4 plays a crucial role in retrieving Na+ from the phloem in the upper nodes, peduncle, and rachis, thereby preventing Na+ distribution to the grains at the reproductive stage of rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Phloem , Plant Proteins , Sodium , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Phloem/metabolism , Phloem/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Sodium/metabolism , Reproduction , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
10.
Cell Death Dis ; 15(8): 571, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112478

ABSTRACT

Endometrial cancer (EC) is a highly heterogeneous malignancy characterized by varied pathology and prognoses, and the heterogeneity of its cancer cells and the tumor microenvironment (TME) remains poorly understood. We conducted single-cell RNA sequencing (scRNA-seq) on 18 EC samples, encompassing various pathological types to delineate their specific unique transcriptional landscapes. Cancer cells from diverse pathological sources displayed distinct hallmarks labeled as immune-modulating, proliferation-modulating, and metabolism-modulating cancer cells in uterine clear cell carcinomas (UCCC), well-differentiated endometrioid endometrial carcinomas (EEC-I), and uterine serous carcinomas (USC), respectively. Cancer cells from the UCCC exhibited the greatest heterogeneity. We also identified potential effective drugs and confirmed their effectiveness using patient-derived EC organoids for each pathological group. Regarding the TME, we observed that prognostically favorable CD8+ Tcyto and NK cells were prominent in normal endometrium, whereas CD4+ Treg, CD4+ Tex, and CD8+ Tex cells dominated the tumors. CXCL3+ macrophages associated with M2 signature and angiogenesis were exclusively found in tumors. Prognostically relevant epithelium-specific cancer-associated fibroblasts (eCAFs) and SOD2+ inflammatory CAFs (iCAFs) predominated in EEC-I and UCCC groups, respectively. We also validated the oncogenic effects of SOD2+ iCAFs in vitro. Our comprehensive study has yielded deeper insights into the pathogenesis of EC, potentially facilitating personalized treatments for its varied pathological types.


Subject(s)
Endometrial Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Transcriptome/genetics , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL