Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202408096, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083343

ABSTRACT

Systematically orchestrating fundamental building blocks into intricate high-dimensional molecular assemblies at molecular level is imperative for multifunctionality integration. However, this remains a formidable task in crystal engineering due to the dynamic nature of inorganic building blocks. Herein, we develop a multi-template-guided strategy to control building blocks. The coordination modes of ligands and the spatial hindrance of anionic templates are pivotal in dictating the overall structures. Flexible multi-dentate linkers selectively promote the formation of oligomeric assembly ([TeO3(Mo2O2S2)3O2(OH)(C5O2H7)3]4- {TeMo6}) into tetrahedral cages ([(TeO3)4(Mo2O2S2)12(OH)12(C9H9O4P)6]8- {Te4Mo24} and [(AsO4)4(Mo2O2S2)12(OH)12(C9H9O6)4]12- {As4Mo24}), while steric hindrance from anionic templates further assists in assembling cages into an open quadruply twisted Möbius nanobelt ([(C6H5O3P)8(Mo2O2S2)24(OH)24(C8H10O4)12]16- {P8Mo48}). Among these structures, the hydrophilic-hydrophobic hybrid cage {Te4Mo24} emerges as an exemplary molecular model for proton conduction and serves as a prototype for humidity gradient-based power generators (HGPGs). The Te4Mo24-PVDF-based HGPG (PVDF = Poly(vinylidene fluoride)) exhibits notable stability and power generation, yielding an open-circuit voltage of 0.51 V and a current density of 77.8 nA cm-2 at room temperature and 90% relative humidity (RH). Further insights into the interactions between water molecules and microscale molecules within the generator are achieved through molecular dynamics simulations. This endeavor unveils a universal strategy for synthesizing multifunctional integration molecules.

2.
BMC Genomics ; 25(1): 291, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504151

ABSTRACT

BACKGROUND: Thymus mongolicus (family Lamiaceae) is a Thyme subshrub with strong aroma and remarkable environmental adaptability. Limited genomic information limits the use of this plant. RESULTS: Chromosome-level 605.2 Mb genome of T. mongolicus was generated, with 96.28% anchored to 12 pseudochromosomes. The repetitive sequences were dominant, accounting for 70.98%, and 32,593 protein-coding genes were predicted. Synteny analysis revealed that Lamiaceae species generally underwent two rounds of whole genome duplication; moreover, species-specific genome duplication was identified. A recent LTR retrotransposon burst and tandem duplication might play important roles in the formation of the Thymus genome. Using comparative genomic analysis, phylogenetic tree of seven Lamiaceae species was constructed, which revealed that Thyme plants evolved recently in the family. Under the phylogenetic framework, we performed functional enrichment analysis of the genes on nodes that contained the most gene duplication events (> 50% support) and of relevant significant expanded gene families. These genes were highly associated with environmental adaptation and biosynthesis of secondary metabolites. Combined transcriptome and metabolome analyses revealed that Peroxidases, Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferases, and 4-coumarate-CoA ligases genes were the essential regulators of the phenylpropanoid-flavonoid pathway. Their catalytic products (e.g., apigenin, naringenin chalcone, and several apigenin-related compounds) might be responsible for the environmental tolerance and aromatic properties of T. mongolicus. CONCLUSION: This study enhanced the understanding of the genomic evolution of T. mongolicus, enabling further exploration of its unique traits and applications, and contributed to the understanding of Lamiaceae genomics and evolutionary biology.


Subject(s)
Flavonoids , Thymus Plant , Phylogeny , Apigenin , Chromosomes , Evolution, Molecular
3.
Inorg Chem ; 62(49): 20506-20512, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37988635

ABSTRACT

Materials with high proton conductivity have attracted significant attention for their wide-ranging applications in proton exchange membrane fuel cells. However, the design of new and efficient porous proton-conducting materials remains a challenging task. The structure-controllable and highly stable metal phosphates can be synthesized into layer or frame networks to provide proton transport capabilities. Herein, we have successfully synthesized three isomorphic metal phosphovanadates, namely, H2(C2H10N2)2[MII(H2O)2(VIVO)8(OH)4(PO4)4(HPO4)4] (C2H8N2 = 1,2-ethylenediamine; M = Co, Ni, and Cu), by the hydrothermal method employing ethylenediamine as a template. These pure inorganic open frameworks exhibit a cavity width ranging from 6.4 to 7.5 Å. Remarkably, the proton conductivity of compounds 1-3 can reach 1 × 10-2 S·cm-1 at 85 °C and 97% relative humidity (RH), and they can remain stable at high temperatures as well as long-term stability. This work provides a novel strategy for the development and design of porous proton-conducting materials.

4.
Front Plant Sci ; 14: 1180576, 2023.
Article in English | MEDLINE | ID: mdl-37484473

ABSTRACT

Grazing disturbance can change the structure of plant rhizosphere microbial communities and thereby alter the feedback to promote plant growth or induce plant defenses. However, little is known about how such changes occur and vary under different grazing pressures or the roles of root metabolites in altering the composition of rhizosphere microbial communities. In this study, the effects of different grazing pressures on the composition of microbial communities were investigated, and the mechanisms by which different grazing pressures changed rhizosphere microbiomes were explored with metabolomics. Grazing changed composition, functions, and co-expression networks of microbial communities. Under light grazing (LG), some saprophytic fungi, such as Lentinus sp., Ramichloridium sp., Ascobolus sp. and Hyphoderma sp., were significantly enriched, whereas under heavy grazing (HG), potentially beneficial rhizobacteria, such as Stenotrophomonas sp., Microbacterium sp., and Lysobacter sp., were significantly enriched. The beneficial mycorrhizal fungus Schizothecium sp. was significantly enriched in both LG and HG. Moreover, all enriched beneficial microorganisms were positively correlated with root metabolites, including amino acids (AAs), short-chain organic acids (SCOAs), and alkaloids. This suggests that these significantly enriched rhizosphere microbial changes may be caused by these differential root metabolites. Under LG, it is inferred that root metabolites, especially AAs such as L-Histidine, may regulate specific saprophytic fungi to participate in material transformations and the energy cycle and promote plant growth. Furthermore, to help alleviate the stress of HG and improve plant defenses, it is inferred that the root system actively regulates the synthesis of these root metabolites such as AAs, SCOAs, and alkaloids under grazing interference, and then secretes them to promote the growth of some specific plant growth-promoting rhizobacteria and fungi. To summarize, grasses can regulate beneficial microorganisms by changing root metabolites composition, and the response strategies vary under different grazing pressure in typical grassland ecosystems.

5.
Sci Total Environ ; 897: 165338, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37414175

ABSTRACT

Overgrazing generally induces dwarfism in grassland plants, and these phenotypic traits could be transmitted to clonal offspring even when overgrazing is excluded. However, the dwarfism-transmitted mechanism remains largely unknown, despite generally thought to be enabled by epigenetic modification. To clarify the potential role of DNA methylation on clonal transgenerational effects, we conducted a greenhouse experiment with Leymus chinensis clonal offspring from different cattle/sheep overgrazing histories via the demethylating agent 5-azacytidine. The results showed that clonal offspring from overgrazed (by cattle or sheep) parents were dwarfed and the auxin content of leaves significantly decreased compared to offspring from no-grazed parents'. The 5-azaC application generally increased the auxin content and promoted the growth of overgrazed offspring while inhibited no-grazed offspring growth. Meanwhile, there were similar trends in the expression level of genes related to auxin-responsive target genes (ARF7, ARF19), and signal transduction gene (AZF2). These results suggest that DNA methylation leads to overgrazing-induced plant transgenerational dwarfism via inhibiting auxin signal pathway.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Cattle , Animals , Sheep , Indoleacetic Acids/metabolism , Poaceae/physiology
6.
J Am Chem Soc ; 145(4): 2243-2251, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36580675

ABSTRACT

Smart molecular actuators have become a cutting-edge theme due to their ability to convert chemical energy into mechanical energy under external stimulations. However, realizing actuation at the molecular level and elucidating the mechanisms for actuating still remain challenging. Herein, we design and fabricate a novel nanoscaled polyoxometalate-based humidity-responsive molecular actuator {Bi8Mo48} through the assembly of [Mo2O2S2]2+ units, transition metals, and flexible phosphonic acid ligands. {Bi8Mo48} exhibits a semi-flexible cage-like architecture with oxygen-rich surfaces and highly negative charges 72-. The nanoscaled molecular actuator shows reversible expansion and contraction behavior under humidity variations due to lattice expansion and contraction induced by hydrogen bonding and solvation interactions between {Bi8Mo48} and water molecules. Molecular dynamics simulation was further employed to study these processes, which provides a fundamental understanding for the mechanism of humidity actuation at the molecular level.

7.
Front Plant Sci ; 13: 917354, 2022.
Article in English | MEDLINE | ID: mdl-35720531

ABSTRACT

Long-term overgrazing (OG) is one of the key drivers of global grassland degradation with severe loss of productivity and ecosystem functions, which may result in stress memory such as smaller stature of grassland plants. However, how the OG-induced stress memory could be regulated by phytohormones is unknown. In this study, we investigated the changes of four phytohormones of cloned offspring of Leymus chinensis that were developed from no-grazing (NG) plants and OG plants with a grazing history of 30 years. The concentrations of auxin (IAA) and gibberellic acid (GA) in OG plant leaves were 45% and 20% lower than control, respectively. Meanwhile, the level of abscisic acid (ABA) in OG leaves nearly doubled compared with that in NG leaves. The situation was quite similar in roots. Unexpectedly, no significant changes in the jasmonic acid (JA) level were observed between OG and NG plants. The changes in gene expression patterns between OG and NG plants were also investigated by transcriptomic analysis. In total, 302 differentially expressed genes (DEGs) were identified between OG and NG plants, which were mainly classified into the functions of synthesis, receptor, and signal transduction processes of phytohormones. The expression of 24 key genes related to the biosynthesis and signal transduction of IAA and GA was downregulated in OG plants. Among them, OASA1 and AO1 (regulating the biosynthesis of IAA and ABA, respectively) were reduced significantly by 88 and 92%, respectively. In addition, the content of secondary metabolites related to plant defense such as flavonoids and phenols was also increased in leaves. Taken together, the decrease of positive plant growth-related hormones (IAA and GA) together with the increase of plant stress-related hormones or factors (ABA, flavonoids, and phenols) induced the growth-defense trade-offs for L. chinensis adaptation to long-term OG stress. The findings reported in this study shed new light on the mechanism of plant-animal interaction in the grassland ecosystem and provide a deeper insight into optimizing grazing management and sustainable utilization of grassland.

8.
Sci Rep ; 11(1): 18018, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34504203

ABSTRACT

We study the vertical impact of a droplet onto a cubic pillar of comparable size placed on a flat surface, by means of numerical simulations and experiments. Strikingly, during the impact a large volume of air is trapped around the pillar side faces. Impingement upon different positions of the pillar top surface strongly influences the size and the position of the entrapped air. By comparing the droplet morphological changes during the impact from both computations and experiments, we show that the direct numerical simulations, based on the Volume of Fluid method, provide additional and new insight into the droplet dynamics. We elucidate, with the computational results, the three-dimensional air entrapment process as well as the evolution of the entrapped air into bubbles.

9.
Sci Rep ; 11(1): 1427, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446801

ABSTRACT

Utilizing methods such as scanning electron microscopy observation and mercury intrusion porosimetry, this paper investigates the basic microstructure and pore structure properties of polymer-cement composite joint sealants for pavements, and analyzes the effects and rules of various material types, ratio parameters and processing conditions. Further, the fractal characteristics and variation rules of pore size distribution are investigated for the joint sealants by introducing the fractal theory. The results show that changes in material type, ratio parameter and processing condition produce insignificant effects on the basic microstructure properties and configuration of joint sealants, with effects reflected primarily in the change of sealant pore structure. Measures like increasing the powder-liquid ratio and cement ratio, blending with sulphoaluminate cement or mica powder, adding latex powder or coupling agent, cold drawing and hot pressing, as well as ultraviolet irradiation treatment are all capable of reducing the total pore volume of joint sealants and refining their pore structure. In contrast, opposite effects are yielded when low-grade cement is used, styrene-acrylic emulsion is blended, or plasticizer is added. Additionally, after blending with talc powder or adding carbon fiber additive, the total pore volume of joint sealants remains basically unchanged or reduced, despite the coarsened pore structure. The total pore volume of joint sealants increases after wet-dry cycling treatment, while no obvious change in the pore size distribution is observed. Pore size distribution of the studied joint sealants presents distinct fractal characteristics, and the corresponding fractal dimension of pore surface area ranges between 2.6 and 2.8.

10.
Materials (Basel) ; 13(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708069

ABSTRACT

Joint sealant is affected by various environmental factors in service, such as different temperatures, water soaking, ultraviolet and so on. In this paper, the VAE emulsion-cement compositejoint sealant was pretreated under multiple simulation environments. Thereafter, the degradation rules of fixed elongation and tensile properties of joint sealants at different mix proportions were systemically investigated under the action of external environments (temperature, water soaking and ultraviolet), and the influence mechanisms of diverse environmental factors were analyzed. The research results suggested that, under the action of external environments, the VAE emulsion-cement composite joint sealants exhibited degradation effects to varying degrees. After the addition of plasticizer, the joint sealants had reduced cohesion strength in low temperature environment and enhanced flexible deformability. The addition of water repellent improved the water resistance of joint sealants. Meanwhile, adding ultraviolet shield agent partially improved the ultraviolet radiation aging resistance. A greater powder-liquid ratio led to the lower flexibility of joint sealants, but superior water resistance and ultraviolet radiation aging resistance.

11.
PeerJ ; 8: e9266, 2020.
Article in English | MEDLINE | ID: mdl-32596041

ABSTRACT

Grazing, one of the primary utilization modes of grassland, is the main cause of grassland degradation. Historical overgrazing results in dwarf phenotype and decreased photosynthesis of perennial plants. However, it remains unknown what the mechanism underlying of this legacy effect is, and the role of stomata in the resulting decreased photosynthesis also remains unclear. To address these questions, differences in stomatal density, length and width on both adaxial and abaxial epidermis were compared between overgrazing and ungrazed Leymus chinensis offspring by using rhizome buds cultivated in a greenhouse, and the correlation between photosynthetic capacity and stomatal behavior was also investigated. Our results showed that historical grazing significantly impacted phenotype, photosynthesis and stomatal traits of L. chinensis. The offspring plants taken from overgrazed parents were dwarfed compared to those taken from ungrazed parents, and the photosynthesis and stomatal conductance of plants with a grazing history decreased by 28.6% and 21.3%, respectively. In addition, stomatal density and length on adaxial and abaxial leaf surfaces were significantly increased; however, stomatal width on abaxial leaf surfaces of overgrazed L. chinensis was significantly decreased compared with ungrazed individuals. Moreover, the expression patterns of eight genes related to stomatal regulation were tested: seven were down-regulated (2-18 times) and one was up-regulated (three times). Genes, involved in ABC transporter and receptor-like serine/threonine protein kinase were down-regulated. These results suggest that legacy effects of historical grazing affect the stomatal conductance by decreasing the stomatal width in progeny plants, which thus results in lower photosynthesis. Furthermore, changes of stomatal traits and function were regulated by the inhibition of ABC transporter and serine/threonine protein kinase. These findings are helpful for future exploration of the possible mechanisms underlying the response of grassland plants to long-term overgrazing.

12.
BMC Vet Res ; 15(1): 469, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31878922

ABSTRACT

BACKGROUND: Overgrazing is a primary contributor to severe reduction in forage quality and production in Inner Mongolia, leading to extensive ecosystem degradation, sheep health impairment and growth performance reduction. Further studies to identify serum biomarkers that reflect changes in sheep health and nutritional status following overgrazing would be beneficial. We hereby hypothesize that reduced sheep growth performance under overgrazing conditions would be associated with metabolic and immune response alterations. This study used an untargeted metabolomics analysis by conducting ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) of sheep serum under overgrazing and light grazing conditions to identify metabolic disruptions in response to overgrazing. RESULTS: The sheep body weight gains as well as serum biochemical variables associated with immune responses and nutritional metabolism (immunoglobulin G, albumin, glucose, and nonesterified fatty acids) were significantly decreased with overgrazing compared with light grazing condition. In contrast, other serum parameters such as alanine and aspartate aminotransferase, alkaline phosphatase, total bilirubin, blood urea nitrogen, and interleukin-8 were markedly higher in the overgrazing group. Principal component analysis discriminated the metabolomes of the light grazing from the overgrazing group. Multivariate and univariate analyses revealed changes in the serum concentrations of 15 metabolites (9 metabolites exhibited a marked increase, whereas 6 metabolites showed a significant decrease) in the overgrazing group. Major changes of fatty acid oxidation, bile acid biosynthesis, and purine and protein metabolism were observed. CONCLUSIONS: These findings offer metabolic evidence for putative biomarkers for overgrazing-induced changes in serum metabolism. Target-identification of these particular metabolites may potentially increase our knowledge of the molecular mechanisms of altered immune responses, nutritional metabolism, and reduced sheep growth performance under overgrazing conditions.


Subject(s)
Diet/veterinary , Metabolome , Sheep, Domestic/metabolism , Animal Nutritional Physiological Phenomena , Animals , Biomarkers/blood , China , Grassland , Herbivory , Male , Sheep, Domestic/blood , Sheep, Domestic/immunology , Weight Gain
13.
Materials (Basel) ; 13(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861364

ABSTRACT

This study carried out tensile tests at definite elongation, tensile and shear tests on 4 admixture-modified styrene-acrylic emulsion-based cement composites (SECCs), and measured the strength, deformation, and energy consumption indexes of test specimens, so as to investigate the influences of coalescing agent, plasticizer, silane coupling agent, and nanometer aluminium oxide on the bond, tensile, and shear mechanical properties of the test specimens. Additionally, the Field Emission Scanning Electron Microscope (FE-SEM) test and Mercury Intrusion Porosimetry (MIP) test were conducted on the composite material specimens, to analyze the microscopic mechanism of different admixtures in modifying the mechanical properties of the SECC. The results suggested that the addition of coalescing agent, plasticizer, silane coupling agent, and nanometer aluminium oxide improved the bond, tensile and shear properties of the SECC specimens to various degrees. Of them, the coalescing agent promoted the mutual cross-linking of organic polymers with inorganic products, and optimized the transition interface to enhance the comprehensive mechanical properties of the test specimens; by contrast, nanometer aluminium oxide developed secondary hydration reaction with the inorganic products, and refined the pore structure to modify the mechanical properties of test specimens. Therefore, both of them achieved significant modification effects. Typically, the optimal bond properties of FFAMC, PLMC, SCAMC, and NAMC test specimens were achieved at the coalescing agent, plasticizer, silane coupling agent, and nanometer aluminium oxide addition amounts of 4%, 1.5%, 3%, and 1%, respectively. Besides, the improving effects of different admixtures on the tensile property of SECC specimens followed the order of coalescing agent > nanometer aluminium oxide > plasticizer > silane coupling agent, with the optimal addition amounts of 4%, 1.5%, 1%, and 2%, respectively. In addition, the improving effects of different admixtures on the shear performance of SECC specimens followed the order of coalescing agent > nanometer aluminium oxide > silane coupling agent > plasticizer, with the optimal addition amounts of 4%, 1.5%, 1%, and 1%, respectively.

14.
BMC Genet ; 20(1): 54, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31272371

ABSTRACT

BACKGROUND: Overgrazing is a major factor that causes steppe degradation in Inner Mongolian, resulting in extensive ecosystem damage. Scarcity of grass means sheep are smaller and therefore mutton and cashmere production is greatly reduced, which has resulted in massive annual economic losses. Liver is the primary metabolic organ in mammals. It is also the key source of energy supply and detoxification of metabolites in animals, has a close relationship with animal growth. However, investigations on the responses of sheep induced by consequence of overgrazing, particularly those relating to liver-related molecular mechanisms and related metabolic pathways, remain elusive. RESULTS: The body weight daily gain of sheep, immune organ indices (liver and spleen), and serum parameters related to immune response, protein synthesis and energy supply (IgG, albumin, glucose and non-esterified fatty acid) were significantly lower in the overgrazing group. Other serum parameters including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, blood urea nitrogen and interleukin-6 were significantly higher in the overgrazing group. For the RNA-Seq results, we identified approximately 50 differentially expressed genes, of which half of were up-regulated and the other half were down-regulated (overgrazing group versus light grazing group). Bioinformatics analysis identified two enriched KEGG pathways including peroxisome proliferator-activated receptor (PPAR) signaling pathway (related to lipolysis) and ECM-receptor interaction (related to liver injury and apoptosis). Additionally, several of the down-regulated genes were related to detoxification and immune response. CONCLUSIONS: Overall, based on the high-throughput RNA sequencing profile integrated with the results of serum biochemical analyses, consequences of lower forage availability and quality under overgrazing condition induced altered expression levels of genes participating in energy metabolism (particularly lipid metabolism) and detoxification and immune responses, causing lipolysis and impaired health status, which might be key reasons for the reduced growth performance of sheep. This investigation provides a novel foundation for the development of sheep hepatic gene interactive networks that are a response to the degraded forage availability under overgrazing condition.


Subject(s)
Herbivory , Liver/metabolism , Sheep/genetics , Transcriptome , Animals , Biomarkers , Computational Biology , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Metabolic Networks and Pathways , Sheep/metabolism , Signal Transduction
15.
Front Plant Sci ; 10: 170, 2019.
Article in English | MEDLINE | ID: mdl-30873190

ABSTRACT

Sheepgrass [Leymus chinensis (Trin.) Tzvel] is a valuable forage plant highly significant to the grassland productivity of Euro-Asia steppes. Growth of above-ground tissues of L. chinensis is the major component contributing to the grass yield. Although it is generally known that this species is sensitive to ecosystem disturbance and adverse environments, detailed information of how L. chinensis coping with various nutrient deficiency especially phosphate deprivation (-Pi) is still limited. Here, we investigated impact of Pi-deprivation on shoot growth and biomass accumulation as well as photosynthetic properties of L. chinensis. Growth inhibition of Pi-deprived seedlings was most obvious and reduction of biomass accumulation and net photosynthetic rate (Pn) was 55.3 and 63.3%, respectively, compared to the control plants grown under Pi-repleted condition. Also, we compared these characters with seedlings subjected to low-Pi stress condition. Pi-deprivation caused 18.5 and 12.3% more reduction of biomass and Pn relative to low-Pi-stressed seedlings, respectively. Further analysis of in vivo chlorophyll fluorescence and thylakoid membrane protein complexes using 2D-BN/SDS-PAGE combined with immunoblot detection demonstrated that among the measured photosynthetic parameters, decrease of ATP synthase activity was most pronounced in Pi-deprived plants. Together with less extent of lipid peroxidation of the thylakoid membranes and increased ROS scavenger enzyme activities in the leaves of Pi-deprived seedlings, we suggest that the decreased activity of ATP synthase in their thylakoids is the major cause of the greater reduction of photosynthetic efficiency than that of low-Pi stressed plants, leading to the least shoot growth and biomass production in L. chinensis.

16.
Sci Rep ; 8(1): 17912, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559460

ABSTRACT

Sheepgrass (Leymus chinensis) is one of the dominant grass species present on typical steppes of the Inner Mongolia Plateau. However, L. chinensis has developed a dwarfing phenotype in response to the stressful habitat in grasslands that are severely degraded due to heavy grazing. The lack of transcriptomic and genomic information has prohibited the understanding of the transgenerational effect on physiological alterations in clonal L. chinensis at the molecular level in response to livestock grazing. To solve this problem, transcriptomic information from the leaves of clonal L. chinensis obtained from overgrazed (GR) and non-grazed (NG) grasslands was studied using a paired-end Illumina HiSeq 2500 sequencing platform. First, despite the influence of grazing being absent during the growth of clonal offspring in our hydroponic experiment, compared with those from the NG group, clonal L. chinensis from the GR group exhibited significant dwarf-type morphological traits. A total of 116,356 unigenes were subsequently generated and assembled de novo, of which 55,541 could be annotated to homologous matches in the NCBI non-redundant (Nr), Swiss-Prot, Clusters of Orthologous Groups (COG), gene ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of 3,341 unigenes significantly differed between the GR group and the NG group with an absolute value of Log2 ratio ≥ 1. The altered expression of genes involved in defence and immune responses, pathogenic resistance and cell development indicates that livestock grazing induces a transgenerational effect on the growth inhibition of clonal L. chinensis. The results of the present study will provide important large-scale transcriptomic information on L. chinensis. Furthermore, the results facilitated our investigation of grazing-induced transgenerational effects on both the morphological and physiological characteristics of L. chinensis at the molecular levels.


Subject(s)
Plant Leaves/genetics , Plant Leaves/physiology , Poaceae/genetics , Poaceae/physiology , Transcriptome/genetics , China , Databases, Protein , Ecosystem , Gene Expression Profiling/methods , Gene Ontology , High-Throughput Nucleotide Sequencing/methods , Molecular Sequence Annotation/methods
17.
J Plant Physiol ; 231: 271-276, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30336401

ABSTRACT

Global climate warming has a crucial impact on many terrestrial ecosystems, including temperate steppe. In addition, phosphate deficiency is known to be the common deficiency in soils worldwide due to the low availability of the phosphate nutrient in the form of inorganic phosphate anions (Pi). Consequently, in the future, land plants are likely to simultaneously encounter heat stress and phosphate deficiency more frequently. Sheepgrass 〔Leymus chinensis (Trin.) Tzvel〕is a dominant perennial forage plant highly significant to grass productivity of Eurasian temperate grasslands. Though effects of environmental stress including drought and Pi starvation have been studied, the combined eff ;ects of phosphate deficiency and heat stress on plant physiology remain largely unclear. Here, we investigated the combined eff ;ects of heat stress and phosphate deficiency on above-ground tissue growth and photochemical properties of L. chinensis using in vivo chlorophyll fluorescence spectroscopy. We observed remarkable phenotypic alterations of reduced shoot growth and considerable leaf chlorosis in L. chinensis seedlings under the combined stress condition. Also, we compared changes in photochemical activity between the control and the corresponding stressed seedlings. Based on chlorophyll fluorescence analysis, impairment of PSI was more severe than that of PSII in the seedlings treated with the combined stress. Compared to the control, PSI and PSII activity decreased up to 35.5% and 30%, respectively, under the combined-stress condition. Moreover, our data show that the decreased photosynthetic activity is not the sum of the single-stressed conditions. These results combined with the distinction of other photochemical parameters indicate that a complex interaction between Pi-deficiency and heat stress may exist in the forage plant.


Subject(s)
Phosphates/deficiency , Poaceae/growth & development , Chlorophyll/metabolism , Heat-Shock Response , Photosynthesis , Photosystem II Protein Complex/metabolism , Poaceae/metabolism , Poaceae/physiology
18.
BMC Plant Biol ; 18(1): 81, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29739327

ABSTRACT

BACKGROUND: This study was designed to reveal potential molecular mechanisms of long-term overgrazing-induced dwarfism in sheepgrass (Leymus chinensis). METHODS: An electrospray ionisation mass spectrometry system was used to generate proteomic data of dwarf sheepgrass from a long-term overgrazed rangeland and normal sheepgrass from a long-term enclosed rangeland. Differentially expressed proteins (DEPs) between dwarf and normal sheepgrass were identified, after which their potential functions and interactions with each other were predicted. The expression of key DEPs was confirmed by high-performance liquid chromatography mass spectrometry (HPLC-MS) using a multiple reaction monitoring method. RESULTS: Compared with normal sheepgrass, a total of 51 upregulated and 53 downregulated proteins were identified in dwarf sheepgrass. The amino acids biosynthesis pathway was differentially enriched between the two conditions presenting DEPs, such as SAT5_ARATH and DAPA_MAIZE. The protein-protein interaction (PPI) network revealed a possible interaction between RPOB2_LEPTE, A0A023H9M8_9STRA, ATPB_DIOEL, RBL_AMOTI and DNAK_GRATL. Four modules were also extracted from the PPI network. The HPLC-MS analysis confirmed the upregulation and downregulation of ATPB_DIOEL and DNAK_GRATL, respectively in dwarf samples compared with in the controls. CONCLUSIONS: The upregulated ATPB_DIOEL and downregulated DNAK_GRATL as well as proteins that interact with them, such as RPOB2_LEPTE, A0A023H9M8_9STRA and RBL_AMOTI, may be associated with the long-term overgrazing-induced dwarfism in sheepgrass.


Subject(s)
Plant Proteins/metabolism , Poaceae/growth & development , Amino Acids/metabolism , Animal Husbandry , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant , Mass Spectrometry , Metabolic Networks and Pathways , Plant Proteins/physiology , Poaceae/metabolism , Poaceae/physiology , Proteomics , Spectrometry, Mass, Electrospray Ionization
19.
Front Plant Sci ; 8: 419, 2017.
Article in English | MEDLINE | ID: mdl-28484469

ABSTRACT

Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis, an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate) were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold) a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis. This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis phenotypic traits heavily involve photosynthetic plasticity.

20.
PLoS One ; 12(1): e0169465, 2017.
Article in English | MEDLINE | ID: mdl-28056110

ABSTRACT

Stipa grandis P. Smirn. is a dominant plant species in the typical steppe of the Xilingole Plateau of Inner Mongolia. Selection of suitable reference genes for the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is important for gene expression analysis and research into the molecular mechanisms underlying the stress responses of S. grandis. In the present study, 15 candidate reference genes (EF1 beta, ACT, GAPDH, SamDC, CUL4, CAP, SNF2, SKIP1, SKIP5, SKIP11, UBC2, UBC15, UBC17, UCH, and HERC2) were evaluated for their stability as potential reference genes for qRT-PCR under different stresses. Four algorithms were used: GeNorm, NormFinder, BestKeeper, and RefFinder. The results showed that the most stable reference genes were different under different stress conditions: EF1beta and UBC15 during drought and salt stresses; ACT and GAPDH under heat stress; SKIP5 and UBC17 under cold stress; UBC15 and HERC2 under high pH stress; UBC2 and UBC15 under wounding stress; EF1beta and UBC17 under jasmonic acid treatment; UBC15 and CUL4 under abscisic acid treatment; and HERC2 and UBC17 under salicylic acid treatment. EF1beta and HERC2 were the most suitable genes for the global analysis of all samples. Furthermore, six target genes, SgPOD, SgPAL, SgLEA, SgLOX, SgHSP90 and SgPR1, were selected to validate the most and least stable reference genes under different treatments. Our results provide guidelines for reference gene selection for more accurate qRT-PCR quantification and will promote studies of gene expression in S. grandis subjected to environmental stress.


Subject(s)
Plant Proteins/genetics , Poaceae/genetics , Droughts , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Hot Temperature , Poaceae/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Sodium Chloride/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL