Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 22(6): 26-34, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34036736

ABSTRACT

PURPOSE: Linear accelerator quality assurance (QA) in radiation therapy is a time consuming but fundamental part of ensuring the performance characteristics of radiation delivering machines. The goal of this work is to develop an automated and standardized QA plan generation and analysis system in the Oncology Information System (OIS) to streamline the QA process. METHODS: Automating the QA process includes two software components: the AutoQA Builder to generate daily, monthly, quarterly, and miscellaneous periodic linear accelerator QA plans within the Treatment Planning System (TPS) and the AutoQA Analysis to analyze images collected on the Electronic Portal Imaging Device (EPID) allowing for a rapid analysis of the acquired QA images. To verify the results of the automated QA analysis, results were compared to the current standard for QA assessment for the jaw junction, light-radiation coincidence, picket fence, and volumetric modulated arc therapy (VMAT) QA plans across three linacs and over a 6-month period. RESULTS: The AutoQA Builder application has been utilized clinically 322 times to create QA patients, construct phantom images, and deploy common periodic QA tests across multiple institutions, linear accelerators, and physicists. Comparing the AutoQA Analysis results with our current institutional QA standard the mean difference of the ratio of intensity values within the field-matched junction and ball-bearing position detection was 0.012 ± 0.053 (P = 0.159) and is 0.011 ± 0.224 mm (P = 0.355), respectively. Analysis of VMAT QA plans resulted in a maximum percentage difference of 0.3%. CONCLUSION: The automated creation and analysis of quality assurance plans using multiple APIs can be of immediate benefit to linear accelerator quality assurance efficiency and standardization. QA plan creation can be done without following tedious procedures through API assistance, and analysis can be performed inside of the clinical OIS in an automated fashion.


Subject(s)
Particle Accelerators , Radiotherapy, Intensity-Modulated , Automation , Humans , Phantoms, Imaging , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Software
2.
Med Phys ; 47(1): 99-109, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31663137

ABSTRACT

PURPOSE: To develop and evaluate a method to automatically identify and quantify deformable image registration (DIR) errors between lung computed tomography (CT) scans for quality assurance (QA) purposes. METHODS: We propose a deep learning method to flag registration errors. The method involves preparation of a dataset for machine learning model training and testing, design of a three-dimensional (3D) convolutional neural network architecture that classifies registrations into good or poor classes, and evaluation of a metric called registration error index (REI) which provides a quantitative measure of registration error. RESULTS: Our study shows that, despite having limited number of training images available (10 CT scan pairs for training and 17 CT scan pairs for testing), the method achieves 0.882 AUC-ROC on the test dataset. Furthermore, the combined standard uncertainty of the estimated REI by our model lies within ± 0.11 (± 11% of true REI value), with a confidence level of approximately 68%. CONCLUSIONS: We have developed and evaluated our method using original clinical registrations without generating any synthetic/simulated data. Moreover, test data were acquired from a different environment than that of training data, so that the method was validated robustly. The results of this study showed that our algorithm performs reasonably well in challenging scenarios.


Subject(s)
Four-Dimensional Computed Tomography , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Neural Networks, Computer , Humans , Quality Control , Time Factors
3.
Med Phys ; 45(10): 4471-4482, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30118177

ABSTRACT

PURPOSE: To demonstrate the feasibility of using a purely data-driven, a posteriori respiratory motion modeling and reconstruction compensation method to improve 4D-CBCT image quality under clinically relevant image acquisition conditions. METHODS: Evaluated workflows that utilized a combination of groupwise deformable image registration and motion-compensated image reconstruction algorithms. Groupwise registration is an approach that simultaneously registers all temporal frames of a 4D image to a common reference instead of one at a time so as to minimize the influence of any individual time point on the global smoothness or accuracy of the resulting deformation model. Four-dimensional cone-beam CT (4D-CBCT) Feldkamp-Davis-Kress (FDK) reconstructions were registered to either iteratively computed mean respiratory phase (mean-frame) or preselected respiratory phase (fixed-frame) reference images to model respiratory motion. The resulting 4D transformations were used to deform projection data during the FDK backprojection operation to create motion-compensated reconstructions. Tissue interface sharpness (TIS) was defined as the slope of a sigmoid curve fit to a mobile tissue boundary and was used to evaluate image quality in regions susceptible to motion artifacts. Image quality improvement was assessed for 19 clinical cases by evaluating mitigation of view aliasing artifacts, TIS, image noise reduction, and contrast for implanted fiducial markers. RESULTS: Average (standard deviation) diaphragm TIS recovery relative to initial 4D-CBCT reconstructions was observed to be 87% (46%) using fixed-frame registration alone; 87% (47%) using fixed frame with motion-compensated reconstruction; 101% (68%) using mean-frame registration alone; and 99% (65%) using mean frame with motion-compensated reconstruction. Noise was reduced in sampled soft tissue ROIs by 58% for both fixed-frame registration and registration with motion compensation and by 57% and 58% on average for the corresponding mean-frame methods, respectively. Average improvement in local CNR was observed to be respectively 93% and 98% for fixed-frame registration and registration with motion compensation methods and 116% and 111% for the corresponding mean-frame methods. CONCLUSION: Data-driven groupwise registration and motion-compensated reconstruction offer a feasible means of improving the quality of 4D-CBCT images acquired under clinical conditions. The addition of motion compensation reconstruction after groupwise registration visibly reduced the impact of view aliasing artifacts for the clinical image datasets studied.


Subject(s)
Cone-Beam Computed Tomography , Four-Dimensional Computed Tomography , Image Processing, Computer-Assisted/methods , Movement , Respiration , Algorithms , Artifacts , Feasibility Studies , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...