Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Muscle Nerve ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096012

ABSTRACT

INTRODUCTION/AIMS: Fatigue (subjective perception) and fatigability (objective motor performance worsening) are relevant aspects of disability in individuals with spinal muscular atrophy (SMA). The effect of nusinersen on fatigability in SMA patients has been investigated with conflicting results. We aimed to evaluate this in adult with SMA3. METHODS: We conducted a multicenter retrospective cohort study, including adult ambulant patients with SMA3, data available on 6-minute walk test (6MWT) and Hammersmith Functional Motor Scale-Expanded (HFMSE) at baseline and at least at 6 months of treatment with nusinersen. We investigated fatigability, estimated as 10% or higher decrease in walked distance between the first and sixth minute of the 6MWT, at baseline and over the 14-month follow-up. RESULTS: Forty-eight patients (56% females) were included. The 6MWT improved after 6, 10, and 14 months of treatment (p < 0.05). Of the 27 patients who completed the entire follow-up, 37% improved (6MWT distance increase ≥30 m), 48.2% remained stable, and 14.8% worsened (6MWT distance decline ≥30 m). Fatigability was found at baseline in 26/38 (68%) patients and confirmed at subsequent time points (p < 0.05) without any significant change over the treatment period. There was no correlation between fatigability and SMN2 copy number, sex, age at disease onset, age at baseline, nor with 6MWT total distance and baseline HFMSE score. DISCUSSION: Fatigability was detected at baseline in approximately 2/3 of SMA3 walker patients, without any correlation with clinical features, included motor performance. No effect on fatigability was observed during the 14-month treatment period with nusinersen.

2.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000416

ABSTRACT

5q-Spinal muscular atrophy (5q-SMA) is one of the most common neuromuscular diseases due to homozygous mutations in the SMN1 gene. This leads to a loss of function of the SMN1 gene, which in the end determines lower motor neuron degeneration. Since the generation of the first mouse models of SMA neuropathology, a complex degenerative involvement of the neuromuscular junction and peripheral axons of motor nerves, alongside lower motor neurons, has been described. The involvement of the neuromuscular junction in determining disease symptoms offers a possible parallel therapeutic target. This narrative review aims at providing an overview of the current knowledge about the pathogenesis and significance of neuromuscular junction dysfunction in SMA, circulating biomarkers, outcome measures and available or developing therapeutic approaches.


Subject(s)
Motor Neurons , Muscular Atrophy, Spinal , Neuromuscular Junction , Survival of Motor Neuron 1 Protein , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/metabolism , Humans , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Biomarkers , Disease Models, Animal , Mutation , Mice
3.
Front Neurol ; 15: 1389949, 2024.
Article in English | MEDLINE | ID: mdl-39011358

ABSTRACT

Introduction: Excessive daytime sleepiness (EDS) is a common and debilitating symptom in both forms of myotonic dystrophy (DM), significantly impacting patients' quality of life. The review focuses on the purpose of examining the current understanding of EDS in these conditions, the difficulty in correctly accessing it, the recent findings related to its etiology and prevalence, and a summary of potential therapeutic implications. Methods: We conducted a comprehensive search through PubMed, selecting studies that provided significant insights into the mechanisms, prevalence, and management of EDS in DM1 and DM2. Results and discussion: EDS is highly prevalent in both DM1 and DM2. Polysomnographic studies have revealed prominent dysregulation of REM sleep in DM1, suggesting a possible narcoleptic-like phenotype and alterations in NREM sleep that contributes to daytime sleepiness. Other factors have been proposed to explain EDS in DM1, including dysregulation of the sleep-wake circadian rhythm through nocturnal actigraphy analysis. The central origin of EDS is increasingly delineated supported by serotonin and orexin pathways dysfunction, and recent neuroradiological findings showing that in DM1 hippocampus volume was positively correlated with self-reported fatigue and somnolence. Sleep-disordered breathing and respiratory dysfunctions are prevalent in DM, their direct correlation with EDS remains complex and inconclusive, but respiratory evaluation should be recommended if obstructive sleep apneas or respiratory muscle dysfunctions are suspected. Drug interventions, such as modafinil and mexiletine, have shown promise in managing excessive daytime sleepiness and reducing myotonia without significant cardiac conduction effects. Enhancing EDS management in myotonic dystrophy is key to improving overall patient well-being.

4.
J Funct Morphol Kinesiol ; 9(3)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39051284

ABSTRACT

We aim to develop a deep learning-based algorithm for automated segmentation of thigh muscles and subcutaneous adipose tissue (SAT) from T1-weighted muscle MRIs from patients affected by muscular dystrophies (MDs). From March 2019 to February 2022, adult and pediatric patients affected by MDs were enrolled from Azienda Ospedaliera Universitaria Pisana, Pisa, Italy (Institution 1) and the IRCCS Stella Maris Foundation, Calambrone-Pisa, Italy (Institution 2), respectively. All patients underwent a bilateral thighs MRI including an axial T1 weighted in- and out-of-phase (dual-echo). Both muscles and SAT were manually and separately segmented on out-of-phase image sets by a radiologist with 6 years of experience in musculoskeletal imaging. A U-Net1 and U-Net3 were built to automatically segment the SAT, all the thigh muscles together and the three muscular compartments separately. The dataset was randomly split into the on train, validation, and test set. The segmentation performance was assessed through the Dice similarity coefficient (DSC). The final cohort included 23 patients. The estimated DSC for U-Net1 was 96.8%, 95.3%, and 95.6% on train, validation, and test set, respectively, while the estimated accuracy for U-Net3 was 94.1%, 92.9%, and 93.9%. Both of the U-Nets achieved a median DSC of 0.95 for SAT segmentation. The U-Net1 and the U-Net3 achieved an optimal agreement with manual segmentation for the automatic segmentation. The so-developed neural networks have the potential to automatically segment thigh muscles and SAT in patients affected by MDs.

5.
Neurol Sci ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856822

ABSTRACT

Rare neurological diseases as a whole share peculiar features as motor and/or cognitive impairment, an elevated disability burden, a frequently chronic course and, in present times, scarcity of therapeutic options. The rarity of those conditions hampers both the identification of significant prognostic outcome measures, and the development of novel therapeutic approaches and clinical trials. Collection of objective clinical data through digital devices can support diagnosis, care, and therapeutic research. We provide an overview on recent developments in the field of digital tools applied to rare neurological diseases, both in the care setting and as providers of outcome measures in clinical trials in a representative subgroup of conditions, including ataxias, hereditary spastic paraplegias, motoneuron diseases and myopathies.

6.
Neurol Sci ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802689

ABSTRACT

INTRODUCTION AND METHODS: Myophosphorylase deficiency, also known as McArdle disease or Glycogen Storage Disease type V (GSD-V), is an autosomal recessive metabolic myopathy that results in impaired glycogen breakdown in skeletal muscle. Despite being labelled as a "pure myopathy," cardiac involvement has been reported in some cases, including various cardiac abnormalities such as electrocardiographic changes, coronary artery disease, and cardiomyopathy. Here, we present a unique case of a 72-year-old man with GSD-V and both mitral valvulopathy and coronary artery disease, prompting a systematic review to explore the existing literature on cardiac comorbidities in McArdle disease. RESULTS: Our systematic literature revision identified 7 case reports and 1 retrospective cohort study. The case reports described 7 GSD-V patients, averaging 54.3 years in age, mostly male (85.7%). Coronary artery disease was noted in 57.1% of cases, hypertrophic cardiomyopathy in 28.5%, severe aortic stenosis in 14.3%, and genetic dilated cardiomyopathy in one. In the retrospective cohort study, five out of 14 subjects (36%) had coronary artery disease. DISCUSSION AND CONCLUSION: Despite McArdle disease primarily affecting skeletal muscle, cardiac involvement has been observed, especially coronary artery disease, the frequency of which was moreover found to be higher in McArdle patients than in the background population in a previous study from a European registry. Exaggerated cardiovascular responses during exercise and impaired glycolytic metabolism have been speculated as potential contributors. A comprehensive cardiological screening might be recommended for McArdle disease patients to detect and manage cardiac comorbidities. A multidisciplinary approach is crucial to effectively manage both neurological and cardiac aspects of the disease and improve patient outcomes. Further research is required to establish clearer pathophysiological links between McArdle disease and cardiac manifestations in order to clarify the existing findings.

7.
Cell Death Dis ; 15(4): 303, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684666

ABSTRACT

Scientific literature supports the evidence that cancer stem cells (CSCs) retain inside low reactive oxygen species (ROS) levels and are, therefore, less susceptible to cell death, including ferroptosis, a type of cell death dependent on iron-driven lipid peroxidation. A collection of lung adenocarcinoma (LUAD) primary cell lines derived from malignant pleural effusions (MPEs) of patients was used to obtain 3D spheroids enriched for stem-like properties. We observed that the ferroptosis inducer RSL3 triggered lipid peroxidation and cell death in LUAD cells when grown in 2D conditions; however, when grown in 3D conditions, all cell lines underwent a phenotypic switch, exhibiting substantial resistance to RSL3 and, therefore, protection against ferroptotic cell death. Interestingly, this phenomenon was reversed by disrupting 3D cells and growing them back in adherence, supporting the idea of CSCs plasticity, which holds that cancer cells have the dynamic ability to transition between a CSC state and a non-CSC state. Molecular analyses showed that ferroptosis resistance in 3D spheroids correlated with an increased expression of antioxidant genes and high levels of proteins involved in iron storage and export, indicating protection against oxidative stress and low availability of iron for the initiation of ferroptosis. Moreover, transcriptomic analyses highlighted a novel subset of genes commonly modulated in 3D spheroids and potentially capable of driving ferroptosis protection in LUAD-CSCs, thus allowing to better understand the mechanisms of CSC-mediated drug resistance in tumors.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , Neoplastic Stem Cells , Ferroptosis/genetics , Ferroptosis/drug effects , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/drug effects , Cell Line, Tumor , Lipid Peroxidation , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics , Iron/metabolism
8.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585916

ABSTRACT

Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of Chromatin Assembly Factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live-microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyperaccessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. As a result, histone variants usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, explaining how at later times the epigenome and cell fate can be altered.

9.
Methods Mol Biol ; 2803: 3-12, 2024.
Article in English | MEDLINE | ID: mdl-38676881

ABSTRACT

The extracellular matrix (ECM) forms most of the tissue microenvironment and is in a constant and dynamic equilibrium with cells. The decellularization process employs physical or chemical methods, or a combination of them, to remove the cellular components of tissues and organs while preserving the architecture and composition of the ECM. Depending on the methodology used, the decellularized ECM (dECM) is then suitable for research or clinical applications. Here, we describe an optimized protocol for the efficient decellularization of the human myocardium to generate 3D scaffolds of well-preserved cardiac extracellular matrix that can be used for in vitro or in vivo studies.


Subject(s)
Decellularized Extracellular Matrix , Myocardium , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Myocardium/cytology , Myocardium/metabolism , Tissue Engineering/methods , Decellularized Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Cellular Microenvironment
11.
Cyberpsychol Behav Soc Netw ; 27(4): 275-281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38407874

ABSTRACT

Instagram is one of the most used platforms, and ephemeral stories are proving to be the most used medium for users to share content on the platform. However, there have been few studies examining this type of content in relation to emotional well-being. This study examined the association between the number of published Instagram stories, psychological well-being, personality traits, and gender in a sample of 734 Instagram users from Italy, including 281 men and 453 women, with a mean age of 25.19 years (SD = 7.08). Participants were recruited online and asked to complete an online questionnaire. Differences were found between genders in terms of time spent on Instagram, but not in terms of the number of stories posted in the past week. In the overall sample, a small positive correlation was found between the number of Instagram stories posted and extraversion. When considering gender differences, small effect sizes were observed for emotional dysregulation, agreeableness, and neuroticism, indicating a stronger association with Instagram stories in the female group, and for openness, indicating a stronger association in the male group. Results of multiple regression analyses suggest that among females, psychological variables, including personality and emotional distress, may have a stronger association with Instagram stories. To our knowledge, this is the first study to report these differences. The findings help to clarify how certain characteristics of social media platforms relate to psychological well-being and personality differently in men and women in their journey to using social media.


Subject(s)
Personality , Psychological Distress , Social Media , Humans , Male , Female , Adult , Social Media/statistics & numerical data , Sex Factors , Young Adult , Italy , Surveys and Questionnaires
12.
Biology (Basel) ; 13(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392333

ABSTRACT

This study aims to explore the complex role of cannabinoid type 1 receptor (CB1) signaling in the gastrocnemius muscle, assessing physiological processes in both CB1+/+ and CB1-/- mice. The primary focus is to enhance our understanding of how CB1 contributes to mitochondrial homeostasis. At the tissue level, CB1-/- mice exhibit a substantial miRNA-related alteration in muscle fiber composition, characterized by an enrichment of oxidative fibers. CB1 absence induces a significant increase in the oxidative capacity of muscle, supported by elevated in-gel activity of Complex I and Complex IV of the mitochondrial respiratory chain. The increased oxidative capacity is associated with elevated oxidative stress and impaired antioxidant defense systems. Analysis of mitochondrial biogenesis markers indicates an enhanced capacity for new mitochondria production in CB1-/- mice, possibly adapting to altered muscle fiber composition. Changes in mitochondrial dynamics, mitophagy response, and unfolded protein response (UPR) pathways reveal a dynamic interplay in response to CB1 absence. The interconnected mitochondrial network, influenced by increased fusion and mitochondrial UPR components, underlines the dual role of CB1 in regulating both protein quality control and the generation of new mitochondria. These findings deepen our comprehension of the CB1 impact on muscle physiology, oxidative stress, and MQC processes, highlighting cellular adaptability to CB1-/-. This study paves the way for further exploration of intricate signaling cascades and cross-talk between cellular compartments in the context of CB1 and mitochondrial homeostasis.

13.
J Neuromuscul Dis ; 11(2): 375-387, 2024.
Article in English | MEDLINE | ID: mdl-38189759

ABSTRACT

Background: Becker muscular dystrophy (BMD) is a dystrophinopathy due to in-frame mutations in the dystrophin gene (DMD) which determines a reduction of dystrophin at muscle level. BMD has a wide spectrum of clinical variability with different degrees of disability. Studies of natural history are needed also in view of up-coming clinical trials. Objectives: From an initial cohort of 32 BMD adult subjects, we present a detailed phenotypic characterization of 28 patients, then providing a description of their clinical natural history over the course of 12 months for 18 and 24 months for 13 of them. Methods: Each patient has been genetically characterized. Baseline, and 1-year and 2 years assessments included North Star Ambulatory Assessment (NSAA), timed function tests (time to climb and descend four stairs), 6-minute walk test (6MWT), Walton and Gardner-Medwin Scale and Medical Research Council (MRC) scale. Muscle magnetic resonance imaging (MRI) was acquired at baseline and in a subgroup of 9 patients after 24 months. Data on cardiac function (electrocardiogram, echocardiogram, and cardiac MRI) were also collected. Results and conclusions: Among the clinical heterogeneity, a more severe involvement is often observed in patients with 45-X del, with a disease progression over two years. The 6MWT appears sensitive to detect modification from baseline during follow up while no variation was observed by MRC testing. Muscle MRI of the lower limbs correlates with clinical parameters.Our study further highlights how the phenotypic variability of BMD adult patients makes it difficult to describe an uniform course and substantiates the need to identify predictive parameters and biomarkers to stratify patients.


Subject(s)
Muscular Dystrophy, Duchenne , Adult , Humans , Dystrophin/genetics , Follow-Up Studies , Muscle, Skeletal/pathology , Biological Variation, Population
14.
BMC Musculoskelet Disord ; 25(1): 35, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183077

ABSTRACT

BACKGROUND: In facioscapulohumeral muscular dystrophy (FSHD), it is not known whether physical activity (PA) practiced at young age is associated with the clinical presentation of disease. To assess this issue, we performed a retrospective cohort study concerning the previous practice of sports and, among them, those with medium-high cardiovascular commitment in clinically categorized carriers of a D4Z4 reduced allele (DRA). METHODS: People aged between 18 and 60 were recruited as being DRA carriers. Subcategory (classical phenotype, A; incomplete phenotype, B; asymptomatic carriers, C; complex phenotype, D) and FSHD score, which measures muscle functional impairment, were assessed for all participants. Information on PAs was retrieved by using an online survey dealing with the practice of sports at a young age. RESULTS: 368 participants were included in the study, average age 36.6 years (SD = 9.4), 47.6% male. The FSHD subcategory A was observed in 157 (42.7%) participants with average (± SD) FSHD score of 5.8 ± 3.0; the incomplete phenotype (category B) in 46 (12.5%) participants (average score 2.2 ± 1.7) and the D phenotype in 61 (16.6%, average score 6.5 ± 3.8). Asymptomatic carriers were 104 (subcategory C, 28.3%, score 0.0 ± 0.2). Time from symptoms onset was higher for patients with A (15.8 ± 11.1 years) and D phenotype (13.3 ± 11.9) than for patients with B phenotype (7.3 ± 9.0). The practice of sports was associated with lower FSHD score (-17%) in participants with A phenotype (MR = 0.83, 95% CI = 0.73-0.95, p = 0.007) and by 33% in participants with D phenotype (MR = 0.67, 95% CI = 0.51-0.89, p = 0.006). Conversely, no improvement was observed in participants with incomplete phenotype with mild severity (B). CONCLUSIONS: PAs at a young age are associated with a lower clinical score in the adult A and D FSHD subcategories. These results corroborate the need to consider PAs at the young age as a fundamental indicator for the correct clinical stratification of the disease and its possible evolution.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Sports , Adult , Humans , Male , Adolescent , Young Adult , Middle Aged , Female , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Retrospective Studies , Exercise , Alleles
15.
Clin Genet ; 105(3): 335-339, 2024 03.
Article in English | MEDLINE | ID: mdl-38041579

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease, although 10%-30% of cases are sporadic. However, this percentage may include truly de novo patients (carrying a reduced D4Z4 allele that is not present in either of the parents) and patients with apparently sporadic disease resulting from mosaicism, non-penetrance, or complex genetic situations in either patients or parents. In this study, we characterized the D4Z4 Reduced Alleles (DRA) and evaluated the frequency of truly de novo cases in FSHD1 in a cohort of DNA samples received consecutively for FSHD-diagnostic from 100 Italian families. The D4Z4 testing revealed that 60 families reported a DRA compatible with FSHD1 (1-10 RU). The DRA co-segregated with the disease in most cases. Five families with truly de novo cases were identified, suggesting that this condition may be slightly lower (8%) than previously reported. In addition, D4Z4 characterization in the investigated families showed 4% of mosaic cases and 2% with translocations. This study further highlighted the importance of performing family studies for clarifying apparently sporadic FSHD cases, with significant implications for genetic counseling, diagnosis, clinical management, and procreative choices for patients and families.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Alleles , Mosaicism , Italy/epidemiology , Chromosomes, Human, Pair 4/genetics
16.
Acta Myol ; 42(2-3): 65-70, 2023.
Article in English | MEDLINE | ID: mdl-38090548

ABSTRACT

Objective: Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disease affecting the lower motor neuron, carrying a significant burden on patients' general motor skills and quality of life, characterized by a great variability in phenotypic expression. As new therapeutic options make their appearance on the scene, sensitive clinical tools and outcome measures are needed, especially in adult patients undergoing treatment, in which the expected clinical response is a mild improvement or stabilization of disease progression. Methods: Here, we describe a new functional motor scale specifically designed for evaluating the endurance dimension for the upper and lower limbs in adult SMA patients. Results: The scale was first tested in eight control healthy subjects and then validated in ten adult SMA patients, proving intra- and inter-observer reliability. We also set up an evaluation protocol by using wearable devices including surface EMG and accelerometer. Conclusions: The endurance evaluation should integrate the standard clinical monitoring in the management and follow-up of SMA adult patients.


Subject(s)
Muscular Atrophy, Spinal , Quality of Life , Adult , Humans , Reproducibility of Results , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Fatigue , Clinical Protocols
17.
Explor Target Antitumor Ther ; 4(5): 793-800, 2023.
Article in English | MEDLINE | ID: mdl-37970207

ABSTRACT

Aim: From the start of the pandemic, several aspects of healthcare policies changed, not least the clinical trials management from recruiting capabilities to the protocol compliance in terms of schedule of procedures, follow-up visits, staff constraints and monitoring. This study aims to assess the impact of the COronaVIrusDisease-2019 (COVID-19) pandemic in the conduction of clinical trials at the site of clinical oncology, Ancona (Italy), to identify the strengths and weaknesses upfront the past emergency, and to select better strategies for future similar situations. Methods: Data from February to July of the years 2019, 2020 and 2021 were collected and three practical parameters of the trial unit were investigated: milestones, performance, and impact. Results: The trials mean numbers were 18, 24, and 23, in 2019, 2020, and 2021 respectively. The pre-Site Initiation Visit (PRE-SIV) rate grew from 66.6% in 2019 to 95.5% in 2021 with a deflection in 2020. Protocol deviations were 40 in the period February-July 2019, in the same period of 2020 the number of deviations increased due to COVID related ones, then there was a significant total decrease in February-July 2021. In 2020 and 2021, all the investigator meetings were online. Conclusions: The growing number of remote Site Initiation Visit (SIV) and meetings over the last 3 years suggests the feasibility of the on-line processes. The significant reduction in protocol deviations during 2021 is probably due to an under check of data during a pandemic. But that is also a possible key indicator of the coping strategy made out by clinical oncology to guarantee the continuity of care in clinical trials and to offer new opportunities of cancer care in a bad scenario such as a pandemic one.

18.
Neuromuscul Disord ; 33(12): 911-916, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945485

ABSTRACT

Due to poor data in literature, we aimed to investigate the respiratory function in a large cohort of naïve Italian adult (≥18 years) SMA patients in a multi-centric cross-sectional study. The following respiratory parameters were considered: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and need for non-invasive ventilation (NIV). We included 145 treatment-naïve adult patients (SMA2=18, SMA3=125; SMA4=2), 58 females (40 %), with median age at evaluation of 37 years (range 18-72). Fifty-six (37 %) and 41 (31 %) patients had abnormal (<80 %) values of FVC and FEV1, respectively. Fourteen (14 %) patients needed NIV, started at median age of 21 (range 4-68). Motor function, measured by Hammersmith Functional Motor Scale Expanded and Revised Upper Limb Module as well as SMA2, loss of walking ability, surgery for scoliosis, use of NIV, and cough assisting device (CAD) were all significantly associated to lower FVC and FEV1 values, while no association with age at baseline, disease duration, gender or 6 min walking test was observed, except for a correlation between FVC and age in SMA3 walkers (p < 0.05). In conclusion, respiratory function in adult SMA patients is relatively frequently impaired, substantially stable, and significantly correlated with motor function and disease severity.


Subject(s)
Muscular Atrophy, Spinal , Respiration , Adult , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , Cross-Sectional Studies , Vital Capacity , Forced Expiratory Volume
19.
Explor Target Antitumor Ther ; 4(5): 1095-1103, 2023.
Article in English | MEDLINE | ID: mdl-38023994

ABSTRACT

Aim: Coronavirus disease 2019 (COVID-19) became pandemic on 11th March 2020 and it deeply stressed the healthcare system. Cancer patients represent a vulnerable population, so many recommendations have been approved to ensure optimal management. Clinical research was notably impacted by COVID too. This review aims to analyze the challenges occurred during a pandemic for the management of enrolled patients (enrollment, use of telemedicine visits, study procedures) and for the clinical trials system (from feasibility to selection visit, site initiation visit, monitorings, use of e-signature, deviations and discontinuations). Methods: The studies included in the present review were selected from PubMed/Google Scholar/ScienceDirect databases. Results: During the first phase of pandemic many clinical trials were suspended in accrual and, as the pandemic progressed, recommendations were established to guarantee the safety and the continuity of care of enrolled patients. In addition, lot of new strategies was found during the pandemic to reduce the negative consequences on clinical trial performance and to guarantee new opportunities of care in the respect of good clinical practice (GCP) in a bad scenario. Conclusions: Among all modifiers, investigators would prefer to maintain the positive ones such as pragmatic and simplified trial designs and protocols, reducing in-person visits when not necessary and to minimizing sponsor and contract research organizations (CROs) visits.

20.
Cells ; 12(16)2023 08 19.
Article in English | MEDLINE | ID: mdl-37626916

ABSTRACT

One of the hallmarks of microgravity-induced effects in several cellular models is represented by the alteration of oxidative balance with the consequent accumulation of reactive oxygen species (ROS). It is well known that male germ cells are sensitive to oxidative stress and to changes in gravitational force, even though published data on germ cell models are scarce. We previously studied the effects of simulated microgravity (s-microgravity) on a 2D cultured TCam-2 seminoma-derived cell line, considered the only human cell line available to study in vitro mitotically active human male germ cells. In this study, we used a corresponding TCam-2 3D cell culture model that mimics cell-cell contacts in organ tissue to test the possible effects induced by s-microgravity exposure. TCam-2 cell spheroids were cultured for 24 h under unitary gravity (Ctr) or s-microgravity conditions, the latter obtained using a random positioning machine (RPM). A significant increase in intracellular ROS and mitochondria superoxide anion levels was observed after RPM exposure. In line with these results, a trend of protein and lipid oxidation increase and increased pCAMKII expression levels were observed after RPM exposure. The ultrastructural analysis via transmission electron microscopy revealed that RPM-exposed mitochondria appeared enlarged and, even if seldom, disrupted. Notably, even the expression of the main enzymes involved in the redox homeostasis appears modulated by RPM exposure in a compensatory way, with GPX1, NCF1, and CYBB being downregulated, whereas NOX4 and HMOX1 are upregulated. Interestingly, HMOX1 is involved in the heme catabolism of mitochondria cytochromes, and therefore the positive modulation of this marker can be associated with the observed mitochondria alteration. Altogether, these data demonstrate TCam-2 spheroid sensitivity to acute s-microgravity exposure and indicate the capability of these cells to trigger compensatory mechanisms that allow them to overcome the exposure to altered gravitational force.


Subject(s)
Antioxidants , Weightlessness , Humans , Male , Reactive Oxygen Species , Mitochondria , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL