Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(3): e14336, 2024.
Article in English | MEDLINE | ID: mdl-38783514

ABSTRACT

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Subject(s)
Phenotype , Plant Roots , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Triticum/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/anatomy & histology , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Genes, Plant/genetics , Biomass
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445670

ABSTRACT

Root architecture is key in determining how effective plants are at intercepting and absorbing nutrients and water. Previously, the wheat (Triticum aestivum) cultivars Spica and Maringa were shown to have contrasting root morphologies. These cultivars were crossed to generate an F6:1 population of recombinant inbred lines (RILs) which was genotyped using a 90 K single nucleotide polymorphisms (SNP) chip. A total of 227 recombinant inbred lines (RILs) were grown in soil for 21 days in replicated trials under controlled conditions. At harvest, the plants were scored for seven root traits and two shoot traits. An average of 7.5 quantitative trait loci (QTL) were associated with each trait and, for each of these, physical locations of the flanking markers were identified using the Chinese Spring reference genome. We also compiled a list of genes from wheat and other monocotyledons that have previously been associated with root growth and morphology to determine their physical locations on the Chinese Spring reference genome. This allowed us to determine whether the QTL discovered in our study encompassed genes previously associated with root morphology in wheat or other monocotyledons. Furthermore, it allowed us to establish if the QTL were co-located with the QTL identified from previously published studies. The parental lines together with the genetic markers generated here will enable specific root traits to be introgressed into elite wheat lines. Moreover, the comprehensive list of genes associated with root development, and their physical locations, will be a useful resource for researchers investigating the genetics of root morphology in cereals.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Chromosome Mapping , Phenotype , Genetic Markers , Polymorphism, Single Nucleotide
3.
Plant Cell Environ ; 44(7): 2331-2346, 2021 07.
Article in English | MEDLINE | ID: mdl-33283881

ABSTRACT

Climate change and future warming will significantly affect crop yield. The capacity of crops to dynamically adjust physiological processes (i.e., acclimate) to warming might improve overall performance. Understanding and quantifying the degree of acclimation in field crops could ensure better parameterization of crop and Earth System models and predictions of crop performance. We hypothesized that for field-grown wheat, when measured at a common temperature (25°C), crops grown under warmer conditions would exhibit acclimation, leading to enhanced crop performance and yield. Acclimation was defined as (a) decreased rates of net photosynthesis at 25°C (A25 ) coupled with lower maximum carboxylation capacity (Vcmax25 ), (b) reduced leaf dark respiration at 25°C (both in terms of O2 consumption Rdark _O225 and CO2 efflux Rdark _CO225 ) and (c) lower Rdark _CO225 to Vcmax25 ratio. Field experiments were conducted over two seasons with 20 wheat genotypes, sown at three different planting dates, to test these hypotheses. Leaf-level CO2 -based traits (A25 , Rdark _CO225 and Vcmax25 ) did not show the classic acclimation responses that we hypothesized; by contrast, the hypothesized changes in Rdark_ O2 were observed. These findings have implications for predictive crop models that assume similar temperature response among these physiological processes and for predictions of crop performance in a future warmer world.


Subject(s)
Acclimatization/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Triticum/physiology , Carbon Dioxide/metabolism , Genotype , Global Warming , Oxygen/metabolism , Seeds/growth & development , Temperature , Triticum/genetics , Victoria
4.
J Exp Bot ; 72(2): 445-458, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33070174

ABSTRACT

Gibberellin (GA)-insensitive dwarfing genes Rht-B1b and Rht-D1b that are responsible for the 'Green Revolution' have been remarkably successful in wheat improvement globally. However, these alleles result in shorter coleoptiles and reduced vigour, and hence poor establishment and growth in some environments. Rht18, on the other hand, is a GA-sensitive, dominant gene with potential to overcome some of the early growth limitations associated with Rht-B1b and Rht-D1b. We assessed progeny from both a biparental and a backcross population that contained tall, single dwarf, and double dwarf lines, to determine whether Rht18 differs from Rht-D1b and hence verify its value in wheat improvement. Progeny with Rht18 had an almost identical height to lines with Rht-D1b, and both were ~26% shorter than the tall lines, with the double dwarf 13% shorter again. However, coleoptile length of Rht18 was 42% longer than that of Rht-D1b. We detected no differences in time to terminal spikelet and anthesis, and few differences in stem or spike growth. Both dwarfing genes diverted more dry matter to the spike than tall lines from prior to heading. No differences were detected between Rht18 and Rht-D1b that could prevent the adoption of Rht18 in wheat breeding to overcome some of the limitations associated with the 'Green Revolution' genes.


Subject(s)
Gibberellins , Triticum , Bread , Plant Breeding , Plant Proteins/genetics , Triticum/genetics
5.
AoB Plants ; 12(5): plaa039, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32968474

ABSTRACT

Suboptimal distribution of photosynthetic capacity in relation to light among leaves reduces potential whole-canopy photosynthesis. We quantified the degree of suboptimality in 160 genotypes of wheat by directly measuring photosynthetic capacity and daily irradiance in flag and penultimate leaves. Capacity per unit daily irradiance was systematically lower in flag than penultimate leaves in most genotypes, but the ratio (γ) of capacity per unit irradiance between flag and penultimate leaves varied widely across genotypes, from less than 0.5 to over 1.2. Variation in γ was most strongly associated with differences in photosynthetic capacity in penultimate leaves, rather than with flag leaf photosynthesis or canopy light penetration. Preliminary genome-wide association analysis identified nine strong marker-trait associations with this trait, which should be validated in future work in other environments and/or materials. Our modelling suggests canopy photosynthesis could be increased by up to 5 % under sunny conditions by harnessing this variation through selective breeding for increased γ.

6.
Glob Chang Biol ; 26(7): 4056-4067, 2020 07.
Article in English | MEDLINE | ID: mdl-32237246

ABSTRACT

Reducing the number of tillers per plant using a tiller inhibition (tin) gene has been considered as an important trait for wheat production in dryland environments. We used a spatial analysis approach with a daily time-step coupled radiation and transpiration efficiency model to simulate the impact of the reduced-tillering trait on wheat yield under different climate change scenarios across Australia's arable land. Our results show a small but consistent yield advantage of the reduced-tillering trait in the most water-limited environments both under current and likely future conditions. Our climate scenarios show that whilst elevated [CO2 ] (e[CO2 ]) alone might limit the area where the reduced-tillering trait is advantageous, the most likely climate scenario of e[CO2 ] combined with increased temperature and reduced rainfall consistently increased the area where restricted tillering has an advantage. Whilst long-term average yield advantages were small (ranged from 31 to 51 kg ha-1  year-1 ), across large dryland areas the value is large (potential cost-benefits ranged from Australian dollar 23 to 60 MIL/year). It seems therefore worthwhile to further explore this reduced-tillering trait in relation to a range of different environments and climates, because its benefits are likely to grow in future dry environments where wheat is grown around the world.


Subject(s)
Climate Change , Triticum , Australia , Phenotype
7.
J Exp Bot ; 71(16): 4751-4762, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32347952

ABSTRACT

Using a field to lab approach, mature deep-rooting traits in wheat were correlated to root phenotypes measured on young plants from controlled conditions. Mature deep-rooting root traits of 20 wheat genotypes at maturity were established via coring in three field trials across 2 years. Field traits were correlated to phenotypes expressed by the 20 genotypes after growth in four commonly used lab screens: (i) soil tubes for root emergence, elongation, length, and branching at four ages to 34 days after sowing (DAS); (ii) paper pouches 7 DAS and (iii) agar chambers for primary root (PR) number and angles at 8 DAS; and (iv) soil baskets for PR and nodal root (NR) number and angle at 42 DAS. Correlations between lab and field root traits (r2=0.45-0.73) were highly inconsistent, with many traits uncorrelated and no one lab phenotype correlating similarly across three field experiments. Phenotypes most positively associated with deep field roots were: longest PR and NR axiles from the soil tube screen at 20 DAS; and narrow PR angle and wide NR angle from soil baskets at 42 DAS. Paper and agar PR angles were positively and significantly correlated to each other, but only wide outer PRs in the paper screen correlated positively to shallower field root traits. NR phenotypes in soil baskets were not predicted by PR phenotypes in any screen, suggesting independent developmental controls and value in measuring both root types in lab screens. Strong temporal and edaphic effects on mature root traits, and a lack of understanding of root trait changes during plant development, are major challenges in creating controlled-environment root screens for mature root traits in the field.


Subject(s)
Plant Roots , Triticum , Environment, Controlled , Genotype , Phenotype , Triticum/genetics
8.
J Exp Bot ; 70(18): 4963-4974, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31089708

ABSTRACT

Simple and repeatable methods are needed to select for deep roots under field conditions. A large-scale field experiment was conducted to assess the association between canopy temperature (CT) measured by airborne thermography and rooting depth determined by the core-break method. Three wheat populations, C306×Westonia (CW), Hartog×Drysdale (HD), and Sundor×Songlen (SS), were grown on stored soil water in NSW Australia in 2017 (n=196-252). Cool and warm CT extremes ('tails') were cored after harvest (13-32% of each population). Rooting depth was significantly correlated with CT at late flowering (r= -0.25, -0.52, and -0.23 for CW, HD, and SS, respectively, P<0.05 hereafter), with normalized difference vegetation index (NDVI) at early grain filling (r=0.30-0.39), and with canopy height (r=0.23-0.48). The cool tails showed significantly deeper roots than the respective warm tails by 8.1 cm and 6.2 cm in CW and HD, and correspondingly, greater yields by an average 19% and 7%, respectively. This study highlighted that CT measured rapidly by airborne thermography or NDVI at early grain filling could be used to guide selection of lines with deeper roots to increase wheat yields. The remote measurement methods in this study were repeatable and high throughput, making them well suited to use in breeding programmes.


Subject(s)
Groundwater , Triticum/physiology , Edible Grain/growth & development , Edible Grain/physiology , New South Wales , Plant Roots/growth & development , Plant Roots/physiology , Plant Stems/growth & development , Plant Stems/physiology , Triticum/growth & development , Triticum/metabolism
9.
J Exp Bot ; 70(19): 5051-5069, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31145793

ABSTRACT

High temperatures account for major wheat yield losses annually and, as the climate continues to warm, these losses will probably increase. Both photosynthesis and respiration are the main determinants of carbon balance and growth in wheat, and both are sensitive to high temperature. Wheat is able to acclimate photosynthesis and respiration to high temperature, and thus reduce the negative affects on growth. The capacity to adjust these processes to better suit warmer conditions stands as a potential avenue toward reducing heat-induced yield losses in the future. However, much remains to be learnt about such phenomena. Here, we review what is known of high temperature tolerance in wheat, focusing predominantly on the high temperature responses of photosynthesis and respiration. We also identify the many unknowns that surround this area, particularly with respect to the high temperature response of wheat respiration and the consequences of this for growth and yield. It is concluded that further investigation into the response of photosynthesis and respiration to high temperature could present several methods of improving wheat high temperature tolerance. Extending our knowledge in this area could also lead to more immediate benefits, such as the enhancement of current crop models.


Subject(s)
Carbon Dioxide/metabolism , Hot Temperature , Photosynthesis/physiology , Thermotolerance/physiology , Triticum/physiology
10.
J Exp Bot ; 70(10): 2787-2796, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30821324

ABSTRACT

Crop photosynthesis and yield are limited by slow photosynthetic induction in sunflecks. We quantified variation in induction kinetics across diverse genotypes of wheat for the first time. Following a preliminary study that hinted at wide variation in induction kinetics across 58 genotypes, we grew 10 genotypes with contrasting responses in a controlled environment and quantified induction kinetics of carboxylation capacity (Vcmax) from dynamic A versus ci curves after a shift from low to high light (from 50 µmol m-2 s-1 to 1500 µmol m-2 s-1), in five flag leaves per genotype. Within-genotype median time for 95% induction (t95) of Vcmax varied 1.8-fold, from 5.2 min to 9.5 min. Our simulations suggest that non-instantaneous induction reduces daily net carbon gain by up to 15%, and that breeding to speed up Vcmax induction in the slowest of our 10 genotypes to match that in the fastest genotype could increase daily net carbon gain by up to 3.4%, particularly for leaves in mid-canopy positions (cumulative leaf area index ≤1.5 m2 m-2), those that experience predominantly short-duration sunflecks, and those with high photosynthetic capacities.


Subject(s)
Light , Photosynthesis/radiation effects , Triticum/metabolism , Genotype , Kinetics , Models, Biological , Triticum/genetics , Triticum/radiation effects
11.
Glob Chang Biol ; 24(5): 1965-1977, 2018 05.
Article in English | MEDLINE | ID: mdl-29331062

ABSTRACT

Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high-TE cultivar (cv. Drysdale) over its almost identical low-TE parent line (Hartog), from about -7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221-1,351 mm annual rainfall), under the present-day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg/ha (mean 284 kg/ha) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102% to 118% (mean 109%). The potential annual cost-benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5-year average wheat price of AUD/260 t) with an average of 187 kg/ha under the present climate. The benefit to an individual farmer will depend on location but elevated CO2 raises this nation-wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%.


Subject(s)
Plant Transpiration/physiology , Rain , Triticum/physiology , Australia , Carbon Dioxide/analysis , Climate , Climate Change , Triticum/genetics
12.
Funct Plant Biol ; 43(2): 173-188, 2016 Mar.
Article in English | MEDLINE | ID: mdl-32480451

ABSTRACT

Many rainfed wheat production systems are reliant on stored soil water for some or all of their water inputs. Selection and breeding for root traits could result in a yield benefit; however, breeding for root traits has traditionally been avoided due to the difficulty of phenotyping mature root systems, limited understanding of root system development and function, and the strong influence of environmental conditions on the phenotype of the mature root system. This paper outlines an international field selection program for beneficial root traits at maturity using soil coring in India and Australia. In the rainfed areas of India, wheat is sown at the end of the monsoon into hot soils with a quickly receding soil water profile; in season water inputs are minimal. We hypothesised that wheat selected and bred for high yield under these conditions would have deep, vigorous root systems, allowing them to access and utilise the stored soil water at depth around anthesis and grain-filling when surface layers were dry. The Indian trials resulted in 49 lines being sent to Australia for phenotyping. These lines were ranked against 41 high yielding Australian lines. Variation was observed for deep root traits e.g. in eastern Australia in 2012, maximum depth ranged from 118.8 to 146.3cm. There was significant variation for root traits between sites and years, however, several Indian genotypes were identified that consistently ranked highly across sites and years for deep rooting traits.

14.
Funct Plant Biol ; 40(10): 977-985, 2013 Oct.
Article in English | MEDLINE | ID: mdl-32481166

ABSTRACT

The number of tillers established in cereal crops far exceeds the number that end up being grain bearing at maturity. Improving the economy in tillering has been proposed to improve cereal yields in both favourable and unfavourable environments. The tiller inhibition mutant (tin) is potentially useful for breeding varieties with a greater economy of tillering. However, its tendency to stunting under long day and low temperatures has limited its use. Recently, the inhibition of tillering in tin has been linked to precocious development of solid basal internodes that compete for sucrose and possibly other resources with the growing tiller buds leading to their developmental arrest. Although the physiological basis of stunting in tin is unknown, both inhibition of tillering and stunting begin during the transition from vegetative to reproductive phase indicating a common physiological basis for both. In this review, we provide overall perspectives for the physiological basis of tiller inhibition and stunting in tin and suggest the direction of research in the future.

15.
Plant Physiol ; 160(1): 308-18, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22791303

ABSTRACT

Tillering (branching) is a major yield component and, therefore, a target for improving the yield of crops. However, tillering is regulated by complex interactions of endogenous and environmental signals, and the knowledge required to achieve optimal tiller number through genetic and agronomic means is still lacking. Regulatory mechanisms may be revealed through physiological and molecular characterization of naturally occurring and induced tillering mutants in the major crops. Here we characterize a reduced tillering (tin, for tiller inhibition) mutant of wheat (Triticum aestivum). The reduced tillering in tin is due to early cessation of tiller bud outgrowth during the transition of the shoot apex from the vegetative to the reproductive stage. There was no observed difference in the development of the main stem shoot apex between tin and the wild type. However, tin initiated internode development earlier and, unlike the wild type, the basal internodes in tin were solid rather than hollow. We hypothesize that tin represents a novel type of reduced tillering mutant associated with precocious internode elongation that diverts sucrose (Suc) away from developing tillers. Consistent with this hypothesis, we have observed upregulation of a gene induced by Suc starvation, downregulation of a Suc-inducible gene, and a reduced Suc content in dormant tin buds. The increased expression of the wheat Dormancy-associated (DRM1-like) and Teosinte Branched1 (TB1-like) genes and the reduced expression of cell cycle genes also indicate bud dormancy in tin. These results highlight the significance of Suc in shoot branching and the possibility of optimizing tillering by manipulating the timing of internode elongation.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Plant Stems/growth & development , Triticum/growth & development , Expressed Sequence Tags , Gas Chromatography-Mass Spectrometry , Genes, cdc , Mutation , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Polymerase Chain Reaction/methods , Sucrose/metabolism , Triticum/genetics , Triticum/metabolism
16.
Funct Plant Biol ; 40(1): 14-33, 2012 Feb.
Article in English | MEDLINE | ID: mdl-32481083

ABSTRACT

Stomata are the site of CO2 exchange for water in a leaf. Variation in stomatal control offers promise in genetic improvement of transpiration and photosynthetic rates to improve wheat performance. However, techniques for estimating stomatal conductance (SC) are slow, limiting potential for efficient measurement and genetic modification of this trait. Genotypic variation in canopy temperature (CT) and leaf porosity (LP), as surrogates for SC, were assessed in three wheat mapping populations grown under well-watered conditions. The range and resulting genetic variance were large but not always repeatable across days and years for CT and LP alike. Leaf-to-leaf variation was large for LP, reducing heritability to near zero on a single-leaf basis. Replication across dates and years increased line-mean heritability to ~75% for both CT and LP. Across sampling dates and populations, CT showed a large, additive genetic correlation with LP (rg=-0.67 to -0.83) as expected. Genetic increases in pre-flowering CT were associated with reduced final plant height and both increased harvest index and grain yield but were uncorrelated with aerial biomass. In contrast, post-flowering, cooler canopies were associated with greater aerial biomass and increased grain number and yield. A multi-environment QTL analysis identified up to 16 and 15 genomic regions for CT and LP, respectively, across all three populations. Several of the LP and CT QTL co-located with known QTL for plant height and phenological development and intervals for many of the CT and LP quantitative trait loci (QTL) overlapped, supporting a common genetic basis for the two traits. Notably, both Rht-B1b and Rht-D1b dwarfing alleles were paradoxically positive for LP and CT (i.e. semi-dwarfs had higher stomatal conductance but warmer canopies) highlighting the issue of translation from leaf to canopy in screening for greater transpiration. The strong requirement for repeated assessment of SC suggests the more rapid CT assessment may be of greater value for indirect screening of high or low SC among large numbers of early-generation breeding lines. However, account must be taken of variation in development and canopy architecture when interpreting performance and selecting breeding lines on the basis of CT.

17.
J Exp Bot ; 63(1): 69-89, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21920907

ABSTRACT

The duration of pre-anthesis developmental phases is of interest in breeding for improved adaptation and yield potential in temperate cereals. Yet despite numerous studies on the genetic control of anthesis (flowering) time and floral initiation, little is known about the genetic control of other pre-anthesis phases. Furthermore, little is known about the effect that changes in the duration of pre-anthesis phases could have on traits related to leaf appearance and tillering, or dry matter accumulation before terminal spikelet initiation (TS). The genetic control of the leaf and spikelet initiation phase (LS; from sowing to TS), the stem elongation phase (SE; from TS to anthesis), and, within the latter, from TS to flag leaf appearance and from then to anthesis, was studied in two doubled-haploid, mapping bread wheat populations, Cranbrook × Halberd and CD87 × Katepwa, in two field experiments (ACT and NSW, Australia). The lengths of phases were estimated from measurements of both TS and the onset of stem elongation. Dry weight per plant before TS, rate of leaf appearance, tillering rate, maximum number of tillers and number of leaves, and dry weight per plant at TS were also estimated in the Cranbrook × Halberd population. More genomic regions were identified for the length of the different pre-anthesis phases than for total time to anthesis. Although overall genetic correlations between LS and SE were significant and positive, independent genetic variability between LS and SE, and several quantitative trait loci (QTLs) with different effects on both phases were found in the two populations. Several of these QTLs (which did not seem to coincide with reported major genes) could be of interest for breeding purposes since they were only significant for either LS or SE. There was no relationship between LS and the rate of leaf appearance. LS was strongly and positively correlated with dry weight at TS but only slightly negatively correlated with early vigour (dry weight before TS). Despite significant genetic correlations between LS and some tillering traits, shortening LS so as to lengthen SE without modifying total time to anthesis would not necessarily reduce tillering capacity, as QTLs for tillering traits did not coincide with those QTLs significant only for LS or SE. Therefore, the study of different pre-anthesis phases is relevant for a better understanding of genetic factors regulating developmental time and may offer new tools for fine-tuning it in breeding for both adaptability and yield potential.


Subject(s)
Plant Leaves/physiology , Triticum/genetics , Genes, Plant , Triticum/physiology
18.
Plant Sci ; 181(4): 331-41, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21889038

ABSTRACT

Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.


Subject(s)
Edible Grain/growth & development , Seeds/growth & development , Stress, Physiological , Adaptation, Physiological/genetics , Edible Grain/cytology , Edible Grain/genetics , Plant Growth Regulators/metabolism , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL