Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(11): eadk7329, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489367

ABSTRACT

Small interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediated sensitizing effect, but no activation of canonical MAVS signaling, which involves phosphorylation of IkBα and interferon regulatory transcription factor 3 (IRF3), was observed. In contrast, MAVS mediated a noncanonical signal resulting in a prominent increase in mitochondrial ROS levels, and increase in the BACH1/pNRF2 transcription factor ratio and GPX4 up-regulation, which was associated with a 50% decrease in intracellular glutathione levels. We conclude that siRNAs commonly sensitize to ferroptosis and may severely compromise the conclusions drawn from silencing approaches in biomedical research. Finally, as ferroptosis contributes to a variety of pathophysiological processes, we cannot exclude side effects in human siRNA-based therapeutical concepts that should be clinically tested.


Subject(s)
Ferroptosis , Signal Transduction , Humans , RNA, Small Interfering/genetics , Ferroptosis/genetics , Up-Regulation , Transcription Factors/metabolism
2.
EMBO J ; 43(6): 904-930, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337057

ABSTRACT

Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.


Subject(s)
NF-kappa B , Ubiquitin , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Ubiquitin/metabolism , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Apoptosis/physiology , Inflammation/metabolism
4.
Nature ; 622(7983): 627-636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821702

ABSTRACT

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Subject(s)
Apoptosis , Cellular Senescence , Cytosol , DNA, Mitochondrial , Mitochondria , Animals , Mice , Cytosol/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Proof of Concept Study , Inflammation/metabolism , Phenotype , Longevity , Healthy Aging
5.
Cell Death Differ ; 30(2): 293-303, 2023 02.
Article in English | MEDLINE | ID: mdl-36376381

ABSTRACT

Apoptosis is a regulated cellular pathway that ensures that a cell dies in a structured fashion to prevent negative consequences for the tissue or the organism. Dysfunctional apoptosis is a hallmark of numerous pathologies, and treatments for various diseases are successful based on the induction of apoptosis. Under homeostatic conditions, apoptosis is a non-inflammatory event, as the activation of caspases ensures that inflammatory pathways are disabled. However, there is an increasing understanding that under specific conditions, such as caspase inhibition, apoptosis and the apoptotic machinery can be re-wired into a process which is inflammatory. In this review we discuss how the death receptor and mitochondrial pathways of apoptosis can activate inflammation. Furthermore, we will highlight how cell death due to mitotic stress might be a special case when it comes to cell death and the induction of inflammation.


Subject(s)
Apoptosis , Caspases , Humans , Apoptosis/physiology , Cell Death , Caspases/metabolism , Mitochondria/metabolism , Inflammation/metabolism
6.
Biochim Biophys Acta Mol Cell Res ; 1869(11): 119341, 2022 11.
Article in English | MEDLINE | ID: mdl-35987283

ABSTRACT

Programmed cell death, in particular apoptosis, has vital functions in every healthy organism. In a highly regulated manner cells which are no longer needed or are harmful to the organism undergo suicide. More than just the mere elimination of a cell, apoptosis is increasingly being recognized performing important roles in cellular communication with the microenvironment. These interactions with surrounding cells can have various, and sometimes competing outcomes. Apoptotic cells can promote survival, proliferation and inflammation, but depending on the context also prevent survival and inflammation. In this review, we will summarize the emerging literature on how dying cells can transfer information to their neighbours, and which outcomes this communication has for the whole tissue.


Subject(s)
Apoptosis , Cell Communication , Apoptosis/physiology , Humans , Inflammation/metabolism
7.
Nat Commun ; 13(1): 3775, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798717

ABSTRACT

Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.


Subject(s)
GTP Phosphohydrolases , Mitochondria , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction
8.
Dev Cell ; 57(10): 1211-1225.e6, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35447090

ABSTRACT

Mitochondrial dysfunction is interconnected with cancer. Nevertheless, how defective mitochondria promote cancer is poorly understood. We find that mitochondrial dysfunction promotes DNA damage under conditions of increased apoptotic priming. Underlying this process, we reveal a key role for mitochondrial dynamics in the regulation of DNA damage and genome instability. The ability of mitochondrial dynamics to regulate oncogenic DNA damage centers upon the control of minority mitochondrial outer membrane permeabilization (MOMP), a process that enables non-lethal caspase activation leading to DNA damage. Mitochondrial fusion suppresses minority MOMP and its associated DNA damage by enabling homogeneous mitochondrial expression of anti-apoptotic BCL-2 proteins. Finally, we find that mitochondrial dysfunction inhibits pro-apoptotic BAX retrotranslocation, causing BAX mitochondrial localization and thereby promoting minority MOMP. Unexpectedly, these data reveal oncogenic effects of mitochondrial dysfunction that are mediated via mitochondrial dynamics and caspase-dependent DNA damage.


Subject(s)
Caspases , Mitochondrial Dynamics , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Caspases/metabolism , DNA Damage , Genomic Instability , Humans , bcl-2-Associated X Protein/metabolism
9.
J Cell Biol ; 220(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34623384

ABSTRACT

The cystine-glutamate antiporter, xCT, supports a glutathione synthesis program enabling cancer cells to cope with metabolically stressful microenvironments. Up-regulated xCT, in combination with glutaminolysis, leads to increased extracellular glutamate, which promotes invasive behavior by activating metabotropic glutamate receptor 3 (mGluR3). Here we show that activation of mGluR3 in breast cancer cells activates Rab27-dependent release of extracellular vesicles (EVs), which can transfer invasive characteristics to "recipient" tumor cells. These EVs contain mitochondrial DNA (mtDNA), which is packaged via a PINK1-dependent mechanism. We highlight mtDNA as a key EV cargo necessary and sufficient for intercellular transfer of invasive behavior by activating Toll-like receptor 9 in recipient cells, and this involves increased endosomal trafficking of pro-invasive receptors. We propose that an EV-mediated mechanism, through which altered cellular metabolism in one cell influences endosomal trafficking in other cells, is key to generation and dissemination of pro-invasive microenvironments during mammary carcinoma progression.


Subject(s)
DNA, Mitochondrial/metabolism , Extracellular Vesicles/metabolism , Protein Kinases/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , DNA Packaging/drug effects , Endosomes/drug effects , Endosomes/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/ultrastructure , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neoplasm Invasiveness , Receptors, Metabotropic Glutamate/metabolism , Tetraspanin 30/metabolism , Toll-Like Receptor 9/metabolism , rab27 GTP-Binding Proteins/metabolism
10.
Cell Death Differ ; 27(9): 2726-2741, 2020 09.
Article in English | MEDLINE | ID: mdl-32313199

ABSTRACT

TRAIL-R2 (DR5) is a clinically-relevant therapeutic target and a key target for immune effector cells. Herein, we identify a novel interaction between TRAIL-R2 and the Skp1-Cullin-1-F-box (SCF) Cullin-Ring E3 Ubiquitin Ligase complex containing Skp2 (SCFSkp2). We find that SCFSkp2 can interact with both TRAIL-R2's pre-ligand association complex (PLAC) and ligand-activated death-inducing signalling complex (DISC). Moreover, Cullin-1 interacts with TRAIL-R2 in its active NEDDylated form. Inhibiting Cullin-1's DISC recruitment using the NEDDylation inhibitor MLN4924 (Pevonedistat) or siRNA increased apoptosis induction in response to TRAIL. This correlated with enhanced levels of the caspase-8 regulator FLIP at the TRAIL-R2 DISC, particularly the long splice form, FLIP(L). We subsequently found that FLIP(L) (but not FLIP(S), caspase-8, nor the other core DISC component FADD) interacts with Cullin-1 and Skp2. Importantly, this interaction is enhanced when FLIP(L) is in its DISC-associated, C-terminally truncated p43-form. Prevention of FLIP(L) processing to its p43-form stabilises the protein, suggesting that by enhancing its interaction with SCFSkp2, cleavage to the p43-form is a critical step in FLIP(L) turnover. In support of this, we found that silencing any of the components of the SCFSkp2 complex inhibits FLIP ubiquitination, while overexpressing Cullin-1/Skp2 enhances its ubiquitination in a NEDDylation-dependent manner. DISC recruitment of TRAF2, previously identified as an E3 ligase for caspase-8 at the DISC, was also enhanced when Cullin-1's recruitment was inhibited, although its interaction with Cullin-1 was found to be mediated indirectly via FLIP(L). Notably, the interaction of p43-FLIP(L) with Cullin-1 disrupts its ability to interact with FADD, caspase-8 and TRAF2. Collectively, our results suggest that processing of FLIP(L) to p43-FLIP(L) at the TRAIL-R2 DISC enhances its interaction with co-localised SCFSkp2, leading to disruption of p43-FLIP(L)'s interactions with other DISC components and promoting its ubiquitination and degradation, thereby modulating TRAIL-R2-mediated apoptosis.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Apoptosis/drug effects , Caspase 8/metabolism , Cell Line, Tumor , Cullin Proteins/metabolism , Cyclopentanes/pharmacology , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Humans , Protein Binding/drug effects , Protein Interaction Mapping , Proteolysis/drug effects , Pyrimidines/pharmacology , Signal Transduction/drug effects , TNF Receptor-Associated Factor 2/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology
11.
EMBO Rep ; 21(4): e49799, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32202065

ABSTRACT

Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGAS-STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease.


Subject(s)
DNA, Mitochondrial , Mitochondria , DNA, Mitochondrial/genetics , Humans , Immunity, Innate/genetics , Inflammation/genetics , Mitochondria/genetics , Receptors, Pattern Recognition
12.
EMBO J ; 38(11)2019 06 03.
Article in English | MEDLINE | ID: mdl-31101675

ABSTRACT

Serving as an innate defence mechanism, invading pathogens elicit a broad inflammatory response in cells. In this issue, Brokatzky et al (2019) report that pathogens can cause activation of BAX/BAK which permeabilises a limited number of mitochondria. Induction of DNA damage, or release of mtDNA, triggers STING-dependent pro-inflammatory cytokine expression and secretion, revealing an unexpected role for the mitochondrial apoptotic machinery in immune defence.


Subject(s)
Mitochondria/genetics , bcl-2 Homologous Antagonist-Killer Protein , Apoptosis , Cytokines , DNA, Mitochondrial
13.
EMBO J ; 37(17)2018 09 03.
Article in English | MEDLINE | ID: mdl-30049712

ABSTRACT

During apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP Such caspase-independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signalling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signalling pathway. Using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation (MIMP) can occur during cell death following BAX/BAK-dependent MOMP Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death.


Subject(s)
Apoptosis , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Animals , Cell Line, Tumor , DNA, Mitochondrial/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Permeability
14.
Cell Rep ; 20(12): 2846-2859, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28930681

ABSTRACT

Mitophagy is an evolutionarily conserved process that selectively targets impaired mitochondria for degradation. Defects in mitophagy are often associated with diverse pathologies, including cancer. Because the main known regulators of mitophagy are frequently inactivated in cancer cells, the mechanisms that regulate mitophagy in cancer cells are not fully understood. Here, we identified an E3 ubiquitin ligase (ARIH1/HHARI) that triggers mitophagy in cancer cells in a PINK1-dependent manner. We found that ARIH1/HHARI polyubiquitinates damaged mitochondria, leading to their removal via autophagy. Importantly, ARIH1 is widely expressed in cancer cells, notably in breast and lung adenocarcinomas; ARIH1 expression protects against chemotherapy-induced death. These data challenge the view that the main regulators of mitophagy are tumor suppressors, arguing instead that ARIH1-mediated mitophagy promotes therapeutic resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Carrier Proteins/metabolism , Mitophagy , Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Autophagy/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cytoprotection/drug effects , HeLa Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Neoplasms/pathology , Protein Kinases/metabolism , Protein Stability/drug effects
15.
Biol Chem ; 397(7): 617-35, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27071149

ABSTRACT

Since entering our cells in an endosymbiotic event one billion years ago, mitochondria have shaped roles for themselves in metabolism, inflammation, calcium storage, migration, and cell death. Given this critical role in cellular homeostasis it is essential that they function correctly. Equally critical is the ability of a cell to remove damaged or superfluous mitochondria to avoid potential deleterious effects. In this review we will discuss the various mechanisms of mitochondrial clearance, with a particular focus on Parkin/PINK1-mediated mitophagy, discuss the impact of altered mitophagy in ageing and disease, and finally consider potential therapeutic benefits of targeting mitophagy.


Subject(s)
Autophagy , Mitochondria , Animals , Disease , Humans , Mitochondria/metabolism , Mitochondria/pathology , Protein Kinases/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
16.
Nat Commun ; 7: 10538, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26833356

ABSTRACT

Most apoptotic stimuli require mitochondrial outer membrane permeabilization (MOMP) in order to execute cell death. As such, MOMP is subject to tight control by Bcl-2 family proteins. We have developed a powerful new technique to investigate Bcl-2-mediated regulation of MOMP. This method, called mito-priming, uses co-expression of pro- and anti-apoptotic Bcl-2 proteins to engineer Bcl-2 addiction. On addition of Bcl-2 targeting BH3 mimetics, mito-primed cells undergo apoptosis in a rapid and synchronous manner. Using this method we have comprehensively surveyed the efficacy of BH3 mimetic compounds, identifying potent and specific MCL-1 inhibitors. Furthermore, by combining different pro- and anti-apoptotic Bcl-2 pairings together with CRISPR/Cas9-based genome editing, we find that tBID and PUMA can preferentially kill in a BAK-dependent manner. In summary, mito-priming represents a facile and robust means to trigger mitochondrial apoptosis.


Subject(s)
Mitochondrial Membranes/physiology , Peptide Fragments/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , CRISPR-Cas Systems , Cell Line , Gene Expression Regulation , Genetic Engineering , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/genetics
17.
Mol Cell ; 57(5): 860-872, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25702873

ABSTRACT

During apoptosis, the mitochondrial outer membrane is permeabilized, leading to the release of cytochrome c that activates downstream caspases. Mitochondrial outer membrane permeabilization (MOMP) has historically been thought to occur synchronously and completely throughout a cell, leading to rapid caspase activation and apoptosis. Using a new imaging approach, we demonstrate that MOMP is not an all-or-nothing event. Rather, we find that a minority of mitochondria can undergo MOMP in a stress-regulated manner, a phenomenon we term "minority MOMP." Crucially, minority MOMP leads to limited caspase activation, which is insufficient to trigger cell death. Instead, this caspase activity leads to DNA damage that, in turn, promotes genomic instability, cellular transformation, and tumorigenesis. Our data demonstrate that, in contrast to its well-established tumor suppressor function, apoptosis also has oncogenic potential that is regulated by the extent of MOMP. These findings have important implications for oncogenesis following either physiological or therapeutic engagement of apoptosis.


Subject(s)
Apoptosis/physiology , DNA Damage , Genomic Instability , Mitochondrial Membranes/physiology , Animals , Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Blotting, Western , Caspases/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p19/deficiency , Cyclin-Dependent Kinase Inhibitor p19/genetics , Dose-Response Relationship, Drug , Embryo, Mammalian/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , HCT116 Cells , HeLa Cells , Histones/metabolism , Humans , MCF-7 Cells , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Nitrophenols/pharmacology , Permeability , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Staurosporine/pharmacology , Sulfonamides/pharmacology , Time Factors
18.
Mol Ther ; 22(12): 2083-2092, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25200008

ABSTRACT

Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.


Subject(s)
Adenomatous Polyposis Coli/therapy , Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/administration & dosage , Nanoparticles/administration & dosage , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/immunology , Animals , Antibodies, Monoclonal/immunology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Camptothecin/pharmacology , Cell Line, Tumor , Female , HCT116 Cells , HT29 Cells , Humans , Mice , Mice, Nude , Molecular Targeted Therapy , Nanomedicine , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...