Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Res Microb Sci ; 3: 100152, 2022.
Article in English | MEDLINE | ID: mdl-35909611

ABSTRACT

Trypanosoma cruzi, the etiologic agent of Chagas disease (CD) presents a wide genetic and phenotypic diversity that is classified into seven lineages or discrete typing units (DTU: TcI to TcVI and Tcbat). Although isolates and strains that belong to a particular group can share some attributes, such as geographic distribution, others like growth rate, cell tropism, and response to treatment can be highly variable. In addition, studies that test new trypanocidal drugs are frequently conducted on T. cruzi strains maintained for a long time in axenic culture, resulting in changes in parasite virulence and other important features. This work aimed to isolate and characterize a new T. cruzi strain from a chronic Chagas disease patient. The behavior of this isolate was studied by using standard in vitro assays and in vivo mice infection tests and compared with the T. cruzi Y strain (TcY), broadly used in research laboratories worldwide. Data showed that TcM behaves as a slow-growing strain in vitro that develops chronic infections in mice and displays high tropism to muscular tissues, in accordance with its clinical performance. In contrast, the Y strain behaved as an acute strain that can infect different types of cells and tissues. Interestingly, TcM, which belongs to DTU TcV, is more susceptible to benznidazole than TcY, a TcII strain considered moderately resistant to this drug. These differential properties contribute to the characterization of a TcV strain, one of the main lineages in the southern countries of South America, and open the possibility to introduce changes that improve the management of Chagas patients in the future.

2.
Front Cell Infect Microbiol ; 11: 657257, 2021.
Article in English | MEDLINE | ID: mdl-34476220

ABSTRACT

T. cruzi, the causal agent of Chagas disease, is a parasite able to infect different types of host cells and to persist chronically in the tissues of human and animal hosts. These qualities and the lack of an effective treatment for the chronic stage of the disease have contributed to the durability and the spread of the disease around the world. There is an urgent necessity to find new therapies for Chagas disease. Drug repurposing is a promising and cost-saving strategy for finding new drugs for different illnesses. In this work we describe the effect of carvedilol on T. cruzi. This compound, selected by virtual screening, increased the accumulation of immature autophagosomes characterized by lower acidity and hydrolytic properties. As a consequence of this action, the survival of trypomastigotes and the replication of epimastigotes and amastigotes were impaired, resulting in a significant reduction of infection and parasite load. Furthermore, carvedilol reduced the whole-body parasite burden peak in infected mice. In summary, in this work we present a repurposed drug with a significant in vitro and in vivo activity against T. cruzi. These data in addition to other pharmacological properties make carvedilol an attractive lead for Chagas disease treatment.


Subject(s)
Parasites , Trypanosoma cruzi , Animals , Autophagy , Carvedilol/pharmacology , Drug Repositioning , Mice
SELECTION OF CITATIONS
SEARCH DETAIL