Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 36(23): 6521-6530, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32441944

ABSTRACT

The adsorption of charged inverse micelles at the electrode-liquid interface has an important effect on field screening and on the voltage drop over diffuse double layers. Recently, we analyzed the behavior of inverse micelles in a nonpolar liquid close to this electrode-liquid interface. For the fluorocarbon/surfactant system under study, we are in the limit of slow adsorption and negligible desorption of inverse micelles on the electrodes. Upon applying a voltage step, this results in a measurable Stern layer buildup in the time range of hours clearly distinguishable from the diffuse double layer buildup, which happens in less than 1 s. This Stern layer buildup manifests itself by a shift in the voltage drop from the diffuse double layer to the Stern layer until the voltage drop over the Stern layers reaches the applied voltage, leaving a zero bulk field without the diffuse double layer. New measurements of the transients of Stern layer buildup show that the buildup of charges in the Stern layer is more complex. We explain the observed transient behavior by introducing an asymmetry in the adsorption rate of charged inverse micelles. We provide an equivalent electrical network, an analytical solution to explain the behavior in more detail, and simulations within the diffuse double layer limit for a range of adsorption rates.

2.
Sci Rep ; 9(1): 2806, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30808922

ABSTRACT

Anti-Brownian electrokinetic trapping is a method for trapping single particles in liquid based on particle position measurements and the application of feedback voltages. To achieve trapping in the axial direction, information on the axial particle position is required. However, existing strategies for determining the axial position that are based on measuring the size of the first diffraction ring, theory fitting, advanced optical setups or pre-determined axial image stacks are impractical for anisotropic particles. In this work, axial electrokinetic trapping of anisotropic particles is realized in devices with planar, transparent electrodes. The trapping algorithm uses Fourier-Bessel decomposition of standard microscopy images and is learning from the correlation between applied voltages and changes in the particle appearance. No previous knowledge on the particle appearance, theory fitting or advanced optical setup is required. The particle motion in the trap and the influence of screening of the electric field on this motion are analyzed. The axial trapping method opens new possibilities for measuring properties of anisotropic or isotropic particles and forces acting on such particles.

SELECTION OF CITATIONS
SEARCH DETAIL